Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

112 Gbit/s transmitter optical subassembly based on hybrid integrated directly modulated lasers

Not Accessible

Your library or personal account may give you access

Abstract

Based on the hybrid integration technology, an ultra-compact and low cost transmitter optical subassembly module is proposed. Four directly modulated lasers are combined with a coarse wavelength division multiplexer operated at the O-band. The bandwidth for all channels is measured to be approximately 3 GHz. The 112 Gb/s transmission is experimentally demonstrated for a 10 km standard single mode fiber (SSMF), in which an optical isolator is used for avoiding the back-reflected and scattered light to improve the bit error rate (BER) performance. A low BER and clear eye opening are achieved for 10 km transmission.

© 2018 Chinese Laser Press

PDF Article
More Like This
Ultracompact, 160-Gbit/s transmitter optical subassembly based on 40-Gbit/s × 4 monolithically integrated light source

Takeshi Fujisawa, Toshio Itoh, Shigeru Kanazawa, Kiyoto Takahata, Yuta Ueda, Ryuzo Iga, Hiroaki Sanjo, Takayuki Yamanaka, Masaki Kotoku, and Hiroyuki Ishii
Opt. Express 21(1) 182-189 (2013)

Low-crosstalk operation of directly modulated DFB laser array TOSA for 112-Gbit/s application

Shigeru Kanazawa, Wataru Kobayashi, Yuta Ueda, Takeshi Fujisawa, Tetsuichiro Ohno, Toshihide Yoshimatsu, Hiroyuki Ishii, and Hiroaki Sanjoh
Opt. Express 24(12) 13555-13562 (2016)

112 Gb/s transmission with a directly-modulated laser using FFT-based synthesis of orthogonal PAM and DMT signals

William A. Ling, Yasuhiro Matsui, Henry M. Daghighian, and Ilya Lyubomirsky
Opt. Express 23(15) 19202-19212 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved