Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 13,
  • Issue 9,
  • pp. 091401-
  • (2015)

Time-delay signature concealment of polarization-resolved chaos outputs in vertical-cavity surface-emitting lasers with variable-polarization filtered optical feedback

Not Accessible

Your library or personal account may give you access

Abstract

Through employing permutation entropy and the self-correlation function, the time-delay signature (TDS) of a vertical-cavity surface-emitting laser (VCSEL) with variable-polarization filtered optical feedback (VPFOF) is evaluated theoretically. The work shows that the feedback rate η, polarizer angle θp, and filter bandwidth Λ have an obvious influence on the TDS. The evolution maps of the TDS in parameter space (η,Λ) and (η,θp) are simulated for searching the chaos with weak TDS. Furthermore, compared with a VCSEL with polarization-preserved filtered optical feedback and a VCSEL with variable-polarization mirror optical feedback, this VPFOF–VCSEL shows superiority in TDS suppression.

© 2015 Chinese Laser Press

PDF Article
More Like This
Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback

Yan Li, Zheng-Mao Wu, Zhu-Qiang Zhong, Xian-Jie Yang, Song Mao, and Guang-Qiong Xia
Opt. Express 22(16) 19610-19620 (2014)

Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL

Zhu-Qiang Zhong, Song-Sui Li, Sze-Chun Chan, Guang-Qiong Xia, and Zheng-Mao Wu
Opt. Express 23(12) 15459-15468 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.