Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Learning scene and blur model for active chromatic depth from defocus

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we propose what we believe is a new monocular depth estimation algorithm based on local estimation of defocus blur, an approach referred to as depth from defocus (DFD). Using a limited set of calibration images, we directly learn image covariance, which encodes both scene and blur (i.e., depth) information. Depth is then estimated from a single image patch using a maximum likelihood criterion defined using the learned covariance. This method is applied here within a new active DFD method using a dense textured projection and a chromatic lens for image acquisition. The projector adds texture for low-textured objects, which is usually a limitation of DFD, and the chromatic aberration increases the estimated depth range with respect to a conventional DFD. Here, we provide quantitative evaluations of the depth estimation performance of our method on simulated and real data of fronto-parallel untextured scenes. The proposed method is then experimentally evaluated qualitatively using a 3D printed benchmark.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Passive depth estimation using chromatic aberration and a depth from defocus approach

Pauline Trouvé, Frédéric Champagnat, Guy Le Besnerais, Jacques Sabater, Thierry Avignon, and Jérôme Idier
Appl. Opt. 52(29) 7152-7164 (2013)

Learning local depth regression from defocus blur by soft-assignment encoding

Rémy Leroy, Pauline Trouvé-Peloux, Bertrand Le Saux, Benjamin Buat, and Frédéric Champagnat
Appl. Opt. 61(29) 8843-8849 (2022)

Performance model of depth from defocus with an unconventional camera

P. Trouvé-Peloux, F. Champagnat, G. Le Besnerais, G. Druart, and J. Idier
J. Opt. Soc. Am. A 38(10) 1489-1500 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.