Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rational-operator-based depth-from-defocus approach to scene reconstruction

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents a rational-operator-based approach to depth from defocus (DfD) for the reconstruction of three-dimensional scenes from two-dimensional images, which enables fast DfD computation that is independent of scene textures. Two variants of the approach, one using the Gaussian rational operators (ROs) that are based on the Gaussian point spread function (PSF) and the second based on the generalized Gaussian PSF, are considered. A novel DfD correction method is also presented to further improve the performance of the approach. Experimental results are considered for real scenes and show that both approaches outperform existing RO-based methods.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Adaptive deformation correction of depth from defocus for object reconstruction

Ang Li, Tardi Tjahjadi, and Richard Staunton
J. Opt. Soc. Am. A 31(12) 2694-2702 (2014)

Passive depth estimation using chromatic aberration and a depth from defocus approach

Pauline Trouvé, Frédéric Champagnat, Guy Le Besnerais, Jacques Sabater, Thierry Avignon, and Jérôme Idier
Appl. Opt. 52(29) 7152-7164 (2013)

Performance model of depth from defocus with an unconventional camera

P. Trouvé-Peloux, F. Champagnat, G. Le Besnerais, G. Druart, and J. Idier
J. Opt. Soc. Am. A 38(10) 1489-1500 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (23)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved