Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. Part III: piecewise-homogeneous grading

Not Accessible

Your library or personal account may give you access

Abstract

In Parts I [Appl. Opt. 58, 6067 (2019) [CrossRef]  ] and II [Appl. Opt. 61, 10049 (2022) [CrossRef]  ], we used a coupled optoelectronic model to optimize a thin-film CIGS solar cell with a graded-bandgap photon-absorbing layer, periodically corrugated backreflector, and multilayered antireflection coatings. Bandgap grading of the CIGS photon-absorbing layer was continuous and either linear or nonlinear, in the thickness direction. Periodic corrugation and multilayered antireflection coatings were found to engender slight improvements in the efficiency. In contrast, bandgap grading of the CIGS photon-absorbing layer leads to significant enhancement of efficiency, especially when the grading is continuous and nonlinear. However, practical implementation of continuous nonlinear grading is challenging compared to piecewise-homogeneous grading. Hence, for this study, we investigated piecewise-homogeneous approximations of the optimal linear and nonlinear grading profiles, and found that an equivalent efficiency is achieved using piecewise-homogeneous grading. An efficiency of 30.15% is predicted with a three-layered piecewise-homogeneous CIGS photon-absorbing layer. The results will help experimentalists to implement optimal designs for highly efficient CIGS thin-film solar cells.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. Part II: finite-difference algorithm and double-layer antireflection coatings

Faiz Ahmad, Benjamin J. Civiletti, Peter B. Monk, and Akhlesh Lakhtakia
Appl. Opt. 61(33) 10049-10061 (2022)

Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading

Faiz Ahmad, Tom H. Anderson, Peter B. Monk, and Akhlesh Lakhtakia
Appl. Opt. 58(22) 6067-6078 (2019)

Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading: erratum

Faiz Ahmad, Tom H. Anderson, Peter B. Monk, and Akhlesh Lakhtakia
Appl. Opt. 59(8) 2615-2615 (2020)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.