Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells. Part II: optimal antireflection front-surface texturing

Not Accessible

Your library or personal account may give you access

Abstract

In Part I [Appl. Opt. 59, 1018 (2020) [CrossRef]  ], we used a coupled optoelectronic model to optimize a thin-film AlGaAs solar cell with a graded-bandgap photon-absorbing layer and a periodically corrugated Ag backreflector combined with localized ohmic Pd–Ge–Au backcontacts, because both strategies help to improve the performance of AlGaAs solar cells. However, the results in Part I were affected by a normalization error, which came to light when we replaced the hybridizable discontinuous Galerkin scheme for electrical computation by the faster finite-difference scheme. Therefore, we re-optimized the solar cells containing an $n$-AlGaAs photon-absorbing layer with either a (i) homogeneous, (ii) linearly graded, or (iii) nonlinearly graded bandgap. Another way to improve the power conversion efficiency is by using a surface antireflection texturing on the wavelength scale, so we also optimized four different types of 1D periodic surface texturing: (i) rectangular, (ii) convex hemi-elliptical, (iii) triangular, and (iv) concave hemi-elliptical. Our new results show that the optimal nonlinear bandgap grading enhances the efficiency by as much as 3.31% when the $n$-AlGaAs layer is 400 nm thick and 1.14% when that layer is 2000 nm thick. A hundredfold concentration of sunlight can enhance the efficiency by a factor of 11.6%. Periodic texturing of the front surface on the scale of 0.5–2 free-space wavelengths provides a small relative enhancement in efficiency over the AlGaAs solar cells with a planar front surface; however, the enhancement is lower when the $n$-AlGaAs layer is thicker.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells

Faiz Ahmad, Akhlesh Lakhtakia, and Peter B. Monk
Appl. Opt. 59(4) 1018-1027 (2020)

Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. Part II: finite-difference algorithm and double-layer antireflection coatings

Faiz Ahmad, Benjamin J. Civiletti, Peter B. Monk, and Akhlesh Lakhtakia
Appl. Opt. 61(33) 10049-10061 (2022)

Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. Part III: piecewise-homogeneous grading

Faiz Ahmad, Peter B. Monk, and Akhlesh Lakhtakia
Appl. Opt. 63(11) 2831-2836 (2024)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.