Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quasi-TPPs/Fano resonance systems based on an MDM waveguide structure and its sensing application

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, quasi-Tamm plasmon polaritons (TPPs)/Fano resonance systems based on metal–dielectric–metal (MDM) waveguides are proposed. TPPs are surface electromagnetic modes formed at the interface between a metal and a one-dimensional dielectric photonic crystal (PhC). A metal plasmonic Bragg reflector (PBR) in a MDM waveguide is equivalent to a dielectric PhC, which is realized by periodic MDM waveguide width modulation and leads to the photonic bandgap. By introducing a thin Ag baffle and a PBR in MDM waveguide core, the quasi-TPPs are excited at the interface between the Ag baffle and the PBR, when the phase-matching condition is met. The proposed structure can be fabricated with focused ion beam or electron beam direct-writing lithography, avoiding complex fabrication procedures of manufacturing dielectric PhC by filling the MDM waveguide core with different dielectric materials. Furthermore, an MDM waveguide side-coupled resonator system is constructed to generate Fano resonance by placing a PBR on the side of the MDM waveguide and an Ag baffle in the waveguide core. The Fano resonance originates from the interference between a broad continuum state provided by the Ag baffle and a discrete state provided by quasi-TPPs. The sensing performance of the Fano resonance system is investigated. In this design, the open PBR structure replaces the traditional closed resonant cavity, which makes it more convenient to contact with analytes. The numerical simulations demonstrate that a high sensitivity of 1500 nm/RIU and figure of merit value of ${4.08} \times {{10}^5}$ are achieved.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Optical sensing based on multimode Fano resonances in metal-insulator-metal waveguide systems with X-shaped resonant cavities

Jina Li, Jianfeng Chen, Xing Liu, He Tian, Jinfang Wang, Jingang Cui, and Siti Rohimah
Appl. Opt. 60(18) 5312-5319 (2021)

Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system

Xiaobin Ren, Kun Ren, and Yuanxue Cai
Appl. Opt. 56(31) H1-H9 (2017)

Quadruple Fano resonances in MIM waveguide structure with ring cavities for multisolution concentration sensing

Yajie Liu, He Tian, Xinyi Zhang, Mingyu Wang, and Yu Hao
Appl. Opt. 61(35) 10548-10555 (2022)

Data availability

Data undying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.