Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Generation of a vector conventional soliton via a graphene oxide saturable absorber

Not Accessible

Your library or personal account may give you access

Abstract

We have experimentally observed an ultrashort conventional vector soliton in an erbium-doped fiber laser. The few-layered graphene oxide (GO) is used as a saturable absorber (SA). It is found that the saturable absorption characteristic of GO is polarization independent. Therefore, vector solitons can be obtained without polarization control by using such SA. By using a polarization beam splitter to split the mode-locked pulse obtained in the oscillator, two orthogonal polarization vector solitons with equal intensity and consistent characteristics can be obtained. It demonstrates that the initial soliton consists of two orthogonal polarization components. It is worth noting that these two orthogonal polarization component solitons improve the signal-to-noise ratio (SNR) of 3 dB compared with the initial soliton. The improvement in SNR is very significant and cannot be neglected. This phenomenon has not been reported before, to our knowledge. In addition, the conventional soliton generated by this mode-locked laser has a central wavelength of 1559 nm with 1.1 ps pulse duration. The mode-locking state of this laser can be self-started. After mode locking, the environmental stability is excellent. The experimental results indicate that GO as a broadband SA has great potential and application prospects in the field of vector soliton generation.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Indium selenide as a saturable absorber for a wavelength-switchable vector-soliton fiber laser

Guomei Wang, Guangwei Chen, Wenlei Li, Wenfu Zhang, Chao Zeng, and Wei Zhao
Opt. Mater. Express 9(2) 449-456 (2019)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.