Abstract

We experimentally demonstrate that indium selenide (In2Se3), a III−VI group layered chalcogenide compound, can be used as a saturable absorber (SA) for a wavelength-switchable vector-soliton fiber laser. The modulation depth of the In2Se3-based SA (In2Se3-SA), fabricated by incorporating In2Se3 nanosheets with polyvinyl alcohol, is up to 14%. By inserting the In2Se3-SA into fiber laser, solitons switched at wavelengths of ~1558 and ~1530 nm, with the duration of ~1.88 and ~1.76 ps respectively, can be obtained by adjusting the polarization controller and the pump power. Further investigations demonstrate that the achieved solitons are polarization-locked vector conventional solitons, which reveals that the In2Se3 can serves as a polarization-independent SA. The results indicate that the III−VI group chalcogenide compounds, including In2Se3, could be developed as an alternative for ultrafast pulse generations, particularly, vector-soliton pulse.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber

Handing Xia, Heping Li, Changyong Lan, Chun Li, Xiaoxia Zhang, Shangjian Zhang, and Yong Liu
Opt. Express 22(14) 17341-17348 (2014)

Mode-locking of Er-doped fiber laser using a multilayer MoS2 thin film as a saturable absorber in both anomalous and normal dispersion regimes

Reza Khazaeizhad, Sahar Hosseinzadeh Kassani, Hwanseong Jeong, Dong-Il Yeom, and Kyunghwan Oh
Opt. Express 22(19) 23732-23742 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. D. Mao, B. Q. Jiang, X. T. Gan, C. J. Ma, Y. Chen, C. J. Zhao, H. Zhang, J. B. Zheng, and J. L. Zhao, “Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers,” Photon. Res. 3(2), A43–A46 (2015).
    [Crossref]
  3. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
    [Crossref]
  4. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
    [Crossref]
  5. Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
    [Crossref] [PubMed]
  6. J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22(11), 13244–13249 (2014).
    [Crossref] [PubMed]
  7. X. T. Jiang, S. Gross, M. J. Withford, H. Zhang, D.-I. Yeom, F. Rotermund, and A. Fuerbach, “Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers,” Opt. Mater. Express 8(10), 3055–3071 (2018).
    [Crossref]
  8. D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 99 (2017).
  9. J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7(8), 2968–2979 (2017).
    [Crossref]
  10. L. Yun, “Black phosphorus saturable absorber for dual-wavelength polarization-locked vector soliton generation,” Opt. Express 25(26), 32380–32385 (2017).
    [Crossref]
  11. Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, “Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber,” Opt. Express 24(23), 25933–25942 (2016).
    [Crossref] [PubMed]
  12. J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramsk, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
    [Crossref]
  13. Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
    [Crossref]
  14. H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS(2) saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
    [Crossref] [PubMed]
  15. X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
    [Crossref]
  16. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]
  17. D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
    [Crossref] [PubMed]
  18. A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser,” Photon. Res. 3(2), A69–A78 (2015).
    [Crossref]
  19. Q. L. Li, Y. Li, J. Gao, S. D. Wang, and X. H. Sun, “High Performance Single In2Se3 Nanowire Photodetector,” Appl. Phys. Lett. 99(24), 243105 (2011).
    [Crossref]
  20. H. Peng, C. Xie, D. T. Schoen, and Y. Cui, “Large anisotropy of electrical properties in layer-structured In2Se3 nanowires,” Nano Lett. 8(5), 1511–1516 (2008).
    [Crossref] [PubMed]
  21. J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
    [Crossref]
  22. W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
    [Crossref]
  23. W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
    [Crossref] [PubMed]
  24. D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
    [Crossref] [PubMed]
  25. J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
    [Crossref]
  26. S. K. Mishra, S. Satpathy, and O. Jepsen, “Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide,” J. Phys. Condens. Matter 9(2), 461–470 (1997).
    [Crossref]
  27. T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
    [Crossref] [PubMed]
  28. R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, “Raman scattering in α-In2Se3 crystals,” Mater. Res. Bull. 36(15), 2577–2583 (2001).
    [Crossref]
  29. Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
    [Crossref] [PubMed]
  30. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, “190-fs passively mode-locked thulium fiber laser with a low threshold,” Opt. Lett. 21(12), 881–883 (1996).
    [Crossref] [PubMed]
  31. G. M. Wang, G. W. Chen, W. L. Li, C. Zeng, and H. Yang, “Decaying evolution dynamics of double-pulse mode-locking,” Photon. Res. 6(8), 829–835 (2018).
    [Crossref]
  32. L. Yun, Y. Qiu, C. H. Yang, J. Xing, K. H. Yu, X. X. Xu, and W. Wei, “PbS quantum dots as a saturable absorber for ultrafast laser,” Photon. Res. 6(11), 1028–1032 (2018).
    [Crossref]
  33. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
    [Crossref]
  34. D. D. Han and C. Zeng, “Investigations of switchable fiber soliton laser mode-locked by carbon nanotubes,” Opt. Commun. 319, 25–30 (2014).
    [Crossref]
  35. J. B. Schlager, S. Kawanishi, and M. Saruwatari, “Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser,” Electron. Lett. 27(22), 2072–2073 (1991).
    [Crossref]
  36. H. Ahmad, S. A. Reduan, S. I. Ooi, and M. A. Ismail, “Mechanically exfoliated In2Se3 as a saturable absorber for mode-locking a thulium-doped fluoride fiber laser operating in S-band,” Appl. Opt. 57(24), 6937–6942 (2018).
    [Crossref] [PubMed]
  37. P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
    [Crossref] [PubMed]
  38. D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
    [Crossref] [PubMed]
  39. J. Li, Y. F. Zhao, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
    [Crossref]
  40. K. D. Niu, Q. Y. Chen, R. Y. Sun, B. Y. Man, and H. N. Zhang, “Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber,” Opt. Mater. Express 7(11), 3934–3943 (2017).
    [Crossref]
  41. K. D. Niu, R. Y. Sun, Q. Y. Chen, B. Y. Man, and H. N. Zhang, “Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber,” Photon. Res. 6(2), 72–76 (2018).
    [Crossref]

2018 (8)

X. T. Jiang, S. Gross, M. J. Withford, H. Zhang, D.-I. Yeom, F. Rotermund, and A. Fuerbach, “Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers,” Opt. Mater. Express 8(10), 3055–3071 (2018).
[Crossref]

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

G. M. Wang, G. W. Chen, W. L. Li, C. Zeng, and H. Yang, “Decaying evolution dynamics of double-pulse mode-locking,” Photon. Res. 6(8), 829–835 (2018).
[Crossref]

L. Yun, Y. Qiu, C. H. Yang, J. Xing, K. H. Yu, X. X. Xu, and W. Wei, “PbS quantum dots as a saturable absorber for ultrafast laser,” Photon. Res. 6(11), 1028–1032 (2018).
[Crossref]

H. Ahmad, S. A. Reduan, S. I. Ooi, and M. A. Ismail, “Mechanically exfoliated In2Se3 as a saturable absorber for mode-locking a thulium-doped fluoride fiber laser operating in S-band,” Appl. Opt. 57(24), 6937–6942 (2018).
[Crossref] [PubMed]

P. Yan, Z. Jiang, H. Chen, J. Yin, J. Lai, J. Wang, T. He, and J. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
[Crossref] [PubMed]

K. D. Niu, R. Y. Sun, Q. Y. Chen, B. Y. Man, and H. N. Zhang, “Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber,” Photon. Res. 6(2), 72–76 (2018).
[Crossref]

2017 (7)

J. Li, Y. F. Zhao, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

K. D. Niu, Q. Y. Chen, R. Y. Sun, B. Y. Man, and H. N. Zhang, “Passively Q-switched erbium-doped fiber laser based on SnS2 saturable absorber,” Opt. Mater. Express 7(11), 3934–3943 (2017).
[Crossref]

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
[Crossref] [PubMed]

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 99 (2017).

J. Lee, J. Koo, J. Lee, Y. M. Jhon, and J. H. Lee, “All-fiberized, femtosecond laser at 1912 nm using a bulk-like MoSe2 saturable absorber,” Opt. Mater. Express 7(8), 2968–2979 (2017).
[Crossref]

L. Yun, “Black phosphorus saturable absorber for dual-wavelength polarization-locked vector soliton generation,” Opt. Express 25(26), 32380–32385 (2017).
[Crossref]

2016 (5)

Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, “Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber,” Opt. Express 24(23), 25933–25942 (2016).
[Crossref] [PubMed]

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
[Crossref]

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

2015 (4)

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

A. P. Luo, M. Liu, X. D. Wang, Q. Y. Ning, W. C. Xu, and Z. C. Luo, “Few-layer MoS2-deposited microfiber as highly nonlinear photonic device for pulse shaping in a fiber laser,” Photon. Res. 3(2), A69–A78 (2015).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramsk, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

D. Mao, B. Q. Jiang, X. T. Gan, C. J. Ma, Y. Chen, C. J. Zhao, H. Zhang, J. B. Zheng, and J. L. Zhao, “Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers,” Photon. Res. 3(2), A43–A46 (2015).
[Crossref]

2014 (4)

2013 (1)

2011 (1)

Q. L. Li, Y. Li, J. Gao, S. D. Wang, and X. H. Sun, “High Performance Single In2Se3 Nanowire Photodetector,” Appl. Phys. Lett. 99(24), 243105 (2011).
[Crossref]

2010 (3)

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

2008 (2)

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

H. Peng, C. Xie, D. T. Schoen, and Y. Cui, “Large anisotropy of electrical properties in layer-structured In2Se3 nanowires,” Nano Lett. 8(5), 1511–1516 (2008).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2001 (2)

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[Crossref]

R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, “Raman scattering in α-In2Se3 crystals,” Mater. Res. Bull. 36(15), 2577–2583 (2001).
[Crossref]

1997 (1)

S. K. Mishra, S. Satpathy, and O. Jepsen, “Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide,” J. Phys. Condens. Matter 9(2), 461–470 (1997).
[Crossref]

1996 (1)

1991 (1)

J. B. Schlager, S. Kawanishi, and M. Saruwatari, “Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser,” Electron. Lett. 27(22), 2072–2073 (1991).
[Crossref]

Abramsk, K. M.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramsk, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Abramski, K. M.

Agraït, N.

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

Ahmad, H.

Bacewicz, R.

R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, “Raman scattering in α-In2Se3 crystals,” Mater. Res. Bull. 36(15), 2577–2583 (2001).
[Crossref]

Bando, Y.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Bao, Q. L.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Biele, R.

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

Cao, W. W.

W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
[Crossref]

Castellanos-Gomez, A.

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

Chen, G. W.

G. M. Wang, G. W. Chen, W. L. Li, C. Zeng, and H. Yang, “Decaying evolution dynamics of double-pulse mode-locking,” Photon. Res. 6(8), 829–835 (2018).
[Crossref]

Chen, H.

Chen, Q. Y.

Chen, S.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, “Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber,” Opt. Express 24(23), 25933–25942 (2016).
[Crossref] [PubMed]

Chen, X. S.

W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
[Crossref]

Chen, Y.

Chen, Y. X.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Cheng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

Cho, Y.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

Chu, Z.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

Cui, X. Q.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 99 (2017).

Cui, Y.

H. Peng, C. Xie, D. T. Schoen, and Y. Cui, “Large anisotropy of electrical properties in layer-structured In2Se3 nanowires,” Nano Lett. 8(5), 1511–1516 (2008).
[Crossref] [PubMed]

D’Agosta, R.

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

Ding, W.

W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
[Crossref] [PubMed]

Downer, M. C.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

Du, B.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

Du, J.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Elliot, J.

Fan, D. Y.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Fan, X. Y.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Fang, X.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Feng, W.

W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
[Crossref]

Ferrari, A. C.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Filipowicz, J.

R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, “Raman scattering in α-In2Se3 crystals,” Mater. Res. Bull. 36(15), 2577–2583 (2001).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fuerbach, A.

Gan, X. T.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 99 (2017).

D. Mao, B. Q. Jiang, X. T. Gan, C. J. Ma, Y. Chen, C. J. Zhao, H. Zhang, J. B. Zheng, and J. L. Zhao, “Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers,” Photon. Res. 3(2), A43–A46 (2015).
[Crossref]

Gao, F.

W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
[Crossref]

Gao, J.

Q. L. Li, Y. Li, J. Gao, S. D. Wang, and X. H. Sun, “High Performance Single In2Se3 Nanowire Photodetector,” Appl. Phys. Lett. 99(24), 243105 (2011).
[Crossref]

Gao, P.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Gao, Y.

W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
[Crossref] [PubMed]

Ge, Y. Q.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Golberg, D.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gross, S.

Gu, Y.

W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
[Crossref] [PubMed]

Guo, G. H.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Guo, L.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Han, D. D.

D. D. Han and C. Zeng, “Investigations of switchable fiber soliton laser mode-locked by carbon nanotubes,” Opt. Commun. 319, 25–30 (2014).
[Crossref]

Han, Y.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Hasan, T.

W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

He, Q.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

He, T.

Herrera, K.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

Hu, P. A.

W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
[Crossref]

Hwang, G. S.

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Ismail, M. A.

Jepsen, O.

S. K. Mishra, S. Satpathy, and O. Jepsen, “Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide,” J. Phys. Condens. Matter 9(2), 461–470 (1997).
[Crossref]

Jhon, Y. M.

Jiang, B. Q.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, X. T.

Jiang, Z.

Kawanishi, S.

J. B. Schlager, S. Kawanishi, and M. Saruwatari, “Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser,” Electron. Lett. 27(22), 2072–2073 (1991).
[Crossref]

Keller, U.

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[Crossref]

Koide, Y.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Koo, J.

Lai, J.

Lai, K.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Lee, J.

Lee, J. H.

Lewandowska, R.

R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, “Raman scattering in α-In2Se3 crystals,” Mater. Res. Bull. 36(15), 2577–2583 (2001).
[Crossref]

Li, J.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

J. Li, Y. F. Zhao, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

Li, L.

Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, “Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber,” Opt. Express 24(23), 25933–25942 (2016).
[Crossref] [PubMed]

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Li, M. K.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 99 (2017).

Li, Q. L.

Q. L. Li, Y. Li, J. Gao, S. D. Wang, and X. H. Sun, “High Performance Single In2Se3 Nanowire Photodetector,” Appl. Phys. Lett. 99(24), 243105 (2011).
[Crossref]

Li, T.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Li, W. L.

G. M. Wang, G. W. Chen, W. L. Li, C. Zeng, and H. Yang, “Decaying evolution dynamics of double-pulse mode-locking,” Photon. Res. 6(8), 829–835 (2018).
[Crossref]

Li, Y.

Q. L. Li, Y. Li, J. Gao, S. D. Wang, and X. H. Sun, “High Performance Single In2Se3 Nanowire Photodetector,” Appl. Phys. Lett. 99(24), 243105 (2011).
[Crossref]

Liang, Z. M.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Liao, M.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Lin, M.

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Liu, B.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Liu, G. B.

W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
[Crossref]

Liu, H.

Liu, M.

Liu, X. X.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Liu, Y.

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Lou, F.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Lu, H.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 99 (2017).

Lu, S. B.

Luo, A. P.

Luo, Z. C.

Ma, C. J.

Ma, Y.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Macherzynski, W.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramsk, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Man, B. Y.

Mao, D.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 99 (2017).

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

D. Mao, B. Q. Jiang, X. T. Gan, C. J. Ma, Y. Chen, C. J. Zhao, H. Zhang, J. B. Zheng, and J. L. Zhao, “Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers,” Photon. Res. 3(2), A43–A46 (2015).
[Crossref]

Mishra, S. K.

S. K. Mishra, S. Satpathy, and O. Jepsen, “Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide,” J. Phys. Condens. Matter 9(2), 461–470 (1997).
[Crossref]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ning, Q. Y.

Niu, K. D.

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ooi, S. I.

Pak, A. J.

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Paletko, P.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramsk, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Pan, N.

Paschotta, R.

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[Crossref]

Paszkowicz, W.

R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, “Raman scattering in α-In2Se3 crystals,” Mater. Res. Bull. 36(15), 2577–2583 (2001).
[Crossref]

Peng, H.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

H. Peng, C. Xie, D. T. Schoen, and Y. Cui, “Large anisotropy of electrical properties in layer-structured In2Se3 nanowires,” Nano Lett. 8(5), 1511–1516 (2008).
[Crossref] [PubMed]

Popa, D.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Qiu, Y.

Quereda, J.

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

Reduan, S. A.

Ren, Y.

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Rotermund, F.

Rubio-Bollinger, G.

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

Saruwatari, M.

J. B. Schlager, S. Kawanishi, and M. Saruwatari, “Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser,” Electron. Lett. 27(22), 2072–2073 (1991).
[Crossref]

Satpathy, S.

S. K. Mishra, S. Satpathy, and O. Jepsen, “Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide,” J. Phys. Condens. Matter 9(2), 461–470 (1997).
[Crossref]

Schlager, J. B.

J. B. Schlager, S. Kawanishi, and M. Saruwatari, “Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser,” Electron. Lett. 27(22), 2072–2073 (1991).
[Crossref]

Schoen, D. T.

H. Peng, C. Xie, D. T. Schoen, and Y. Cui, “Large anisotropy of electrical properties in layer-structured In2Se3 nanowires,” Nano Lett. 8(5), 1511–1516 (2008).
[Crossref] [PubMed]

Sharp, R. C.

She, X.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

Sobon, G.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramsk, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22(11), 13244–13249 (2014).
[Crossref] [PubMed]

Song, Y.

Song, Y. F.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Sotor, J.

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramsk, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

J. Sotor, G. Sobon, and K. M. Abramski, “Sub-130 fs mode-locked Er-doped fiber laser based on topological insulator,” Opt. Express 22(11), 13244–13249 (2014).
[Crossref] [PubMed]

Spock, D. E.

Sun, R. Y.

Sun, X. H.

Q. L. Li, Y. Li, J. Gao, S. D. Wang, and X. H. Sun, “High Performance Single In2Se3 Nanowire Photodetector,” Appl. Phys. Lett. 99(24), 243105 (2011).
[Crossref]

Sun, Z.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Tang, D.

Tang, D. Y.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

Tang, R.

Torrisi, F.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Tsai, Y. H.

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Wang, F.

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Wang, F. Z.

Wang, G. M.

G. M. Wang, G. W. Chen, W. L. Li, C. Zeng, and H. Yang, “Decaying evolution dynamics of double-pulse mode-locking,” Photon. Res. 6(8), 829–835 (2018).
[Crossref]

Wang, J.

Wang, M. R.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Wang, S. D.

Q. L. Li, Y. Li, J. Gao, S. D. Wang, and X. H. Sun, “High Performance Single In2Se3 Nanowire Photodetector,” Appl. Phys. Lett. 99(24), 243105 (2011).
[Crossref]

Wang, X. D.

Wang, Y.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

Wang, Z.

W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
[Crossref] [PubMed]

Wei, W.

Wen, S. C.

Withford, M. J.

Wu, D.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Wu, X.

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

Xiao, D.

W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
[Crossref] [PubMed]

Xie, C.

H. Peng, C. Xie, D. T. Schoen, and Y. Cui, “Large anisotropy of electrical properties in layer-structured In2Se3 nanowires,” Nano Lett. 8(5), 1511–1516 (2008).
[Crossref] [PubMed]

Xing, J.

Xu, J. Q.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Xu, S. X.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Xu, W. C.

Xu, X.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Xu, X. X.

Xu, Y. H.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Yan, P.

Yan, Z. Y.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Yang, C. H.

Yang, D.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

Yang, H.

G. M. Wang, G. W. Chen, W. L. Li, C. Zeng, and H. Yang, “Decaying evolution dynamics of double-pulse mode-locking,” Photon. Res. 6(8), 829–835 (2018).
[Crossref]

Yang, J.

Yang, K. J.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Yang, X.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

Yao, J.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Yeom, D.-I.

Yin, J.

Yu, K. H.

Yun, L.

Zeng, C.

G. M. Wang, G. W. Chen, W. L. Li, C. Zeng, and H. Yang, “Decaying evolution dynamics of double-pulse mode-locking,” Photon. Res. 6(8), 829–835 (2018).
[Crossref]

D. D. Han and C. Zeng, “Investigations of switchable fiber soliton laser mode-locked by carbon nanotubes,” Opt. Commun. 319, 25–30 (2014).
[Crossref]

Zeng, H.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

Zeng, H. B.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Zhai, T.

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Zhang, H.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

X. T. Jiang, S. Gross, M. J. Withford, H. Zhang, D.-I. Yeom, F. Rotermund, and A. Fuerbach, “Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers,” Opt. Mater. Express 8(10), 3055–3071 (2018).
[Crossref]

Y. Song, S. Chen, Q. Zhang, L. Li, L. Zhao, H. Zhang, and D. Tang, “Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber,” Opt. Express 24(23), 25933–25942 (2016).
[Crossref] [PubMed]

D. Mao, B. Q. Jiang, X. T. Gan, C. J. Ma, Y. Chen, C. J. Zhao, H. Zhang, J. B. Zheng, and J. L. Zhao, “Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers,” Photon. Res. 3(2), A43–A46 (2015).
[Crossref]

H. Liu, A. P. Luo, F. Z. Wang, R. Tang, M. Liu, Z. C. Luo, W. C. Xu, C. J. Zhao, and H. Zhang, “Femtosecond pulse erbium-doped fiber laser by a few-layer MoS(2) saturable absorber,” Opt. Lett. 39(15), 4591–4594 (2014).
[Crossref] [PubMed]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

Z. C. Luo, M. Liu, H. Liu, X. W. Zheng, A. P. Luo, C. J. Zhao, H. Zhang, S. C. Wen, and W. C. Xu, “2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber,” Opt. Lett. 38(24), 5212–5215 (2013).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

Zhang, H. N.

Zhang, Q.

Zhang, S.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

Zhang, S. Y.

X. X. Liu, S. Y. Zhang, Z. Y. Yan, L. Guo, X. Y. Fan, F. Lou, M. R. Wang, P. Gao, G. H. Guo, T. Li, K. J. Yang, J. Li, and J. Q. Xu, “WSe2 as a saturable absorber for a passively Q-switched Ho,Pr:LLF laser at 2.95 µm,” Opt. Mater. Express 8(5), 1200–1213 (2018).
[Crossref]

Zhang, W.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

Zhang, W. D.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 99 (2017).

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z.

W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
[Crossref] [PubMed]

Zhao, C. J.

Zhao, J.

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

Zhao, J. L.

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 99 (2017).

D. Mao, B. Q. Jiang, X. T. Gan, C. J. Ma, Y. Chen, C. J. Zhao, H. Zhang, J. B. Zheng, and J. L. Zhao, “Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers,” Photon. Res. 3(2), A43–A46 (2015).
[Crossref]

Zhao, L.

Zhao, L. M.

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

Zhao, Y. F.

J. Li, Y. F. Zhao, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

Zheng, J.

Zheng, J. B.

Zheng, W.

W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
[Crossref]

Zheng, X. W.

Zhou, Y.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Zhu, J.

W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
[Crossref] [PubMed]

Zhu, W.

W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Zhu, Z. F.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Zou, Y. S.

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

ACS Nano (1)

T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, and D. Golberg, “Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors,” ACS Nano 4(3), 1596–1602 (2010).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agraït, R. D’Agosta, and A. Castellanos-Gomez, “Strong quantum confinement effect in the optical properties of ultrathin α-In2Se3,” Adv. Opt. Mater. 4(12), 1939–1943 (2016).
[Crossref]

Y. Q. Ge, Z. F. Zhu, Y. H. Xu, Y. X. Chen, S. Chen, Z. M. Liang, Y. F. Song, Y. S. Zou, H. B. Zeng, S. X. Xu, H. Zhang, and D. Y. Fan, “Broadband Nonlinear Photoresponse of 2D TiS2 for Ultrashort Pulse Generation and All-Optical Thresholding Devices,” Adv. Opt. Mater. 6(4), 1701166 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[Crossref]

Appl. Phys. Lett. (3)

Q. L. Li, Y. Li, J. Gao, S. D. Wang, and X. H. Sun, “High Performance Single In2Se3 Nanowire Photodetector,” Appl. Phys. Lett. 99(24), 243105 (2011).
[Crossref]

J. Sotor, G. Sobon, W. Macherzynski, P. Paletko, and K. M. Abramsk, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97(20), 203106 (2010).
[Crossref]

Chem. Mater. (1)

W. Feng, W. Zheng, F. Gao, X. S. Chen, G. B. Liu, T. Hasan, W. W. Cao, and P. A. Hu, “Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3,” Chem. Mater. 28(12), 4278–4283 (2016).
[Crossref]

Electron. Lett. (1)

J. B. Schlager, S. Kawanishi, and M. Saruwatari, “Dual wavelength pulse generation using mode-locked erbium-doped fibre ring laser,” Electron. Lett. 27(22), 2072–2073 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Mao, X. Q. Cui, X. T. Gan, M. K. Li, W. D. Zhang, H. Lu, and J. L. Zhao, “Passively Q-switched and mode-locked fiber laser based on a ReS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 99 (2017).

IEEE Photonics J. (1)

J. Li, Y. F. Zhao, Q. Y. Chen, K. D. Niu, R. Y. Sun, and H. N. Zhang, “Passively Mode-Locked Ytterbium-Doped Fiber Laser Based on SnS2 as Saturable Absorber,” IEEE Photonics J. 9(6), 1–7 (2017).
[Crossref]

J. Phys. Condens. Matter (1)

S. K. Mishra, S. Satpathy, and O. Jepsen, “Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide,” J. Phys. Condens. Matter 9(2), 461–470 (1997).
[Crossref]

Mater. Res. Bull. (1)

R. Lewandowska, R. Bacewicz, J. Filipowicz, and W. Paszkowicz, “Raman scattering in α-In2Se3 crystals,” Mater. Res. Bull. 36(15), 2577–2583 (2001).
[Crossref]

Nano Lett. (3)

Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, and K. Lai, “Out-of-Plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nanoflakes,” Nano Lett. 17(9), 5508–5513 (2017).
[Crossref] [PubMed]

H. Peng, C. Xie, D. T. Schoen, and Y. Cui, “Large anisotropy of electrical properties in layer-structured In2Se3 nanowires,” Nano Lett. 8(5), 1511–1516 (2008).
[Crossref] [PubMed]

D. Wu, A. J. Pak, Y. Liu, Y. Zhou, X. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H. Peng, Y. H. Tsai, G. S. Hwang, and K. Lai, “Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes,” Nano Lett. 15(12), 8136–8140 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, “Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials,” Nat. Commun. 8, 14956 (2017).
[Crossref] [PubMed]

Opt. Commun. (2)

D. D. Han and C. Zeng, “Investigations of switchable fiber soliton laser mode-locked by carbon nanotubes,” Opt. Commun. 319, 25–30 (2014).
[Crossref]

H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Vector dissipative solitons in graphene mode locked fiber lasers,” Opt. Commun. 283(17), 3334–3338 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (4)

Photon. Res. (5)

Phys. Rev. Lett. (1)

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett. 101(15), 153904 (2008).
[Crossref] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Small (1)

D. Mao, B. Du, D. Yang, S. Zhang, Y. Wang, W. Zhang, X. She, H. Cheng, H. Zeng, and J. Zhao, “Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets,” Small 12(11), 1489–1497 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Raman spectrum of In2Se3 nanosheets, inset: ethanol-water dispersion of In2Se3 (b) linear transmission of In2Se3-PVA film, inset: In2Se3-PVA films (left) and micrograph of its side profile (right); (c) nonlinear absorption property of the In2Se3-SA.
Fig. 2
Fig. 2 Schematic diagram of the experimental setup.
Fig. 3
Fig. 3 Conventional soliton centered at ~1558 nm. (a) Spectrum; (b) autocorrelation trace of the soliton; (c) oscilloscope trace; (d) fundamental RF spectrum, inset: wideband RF spectrum.
Fig. 4
Fig. 4 Conventional soliton centered at ~1530 nm. (a) Spectrum; (b) autocorrelation trace of this conventional soliton, inset: oscilloscope trace.
Fig. 5
Fig. 5 (a) Polarization-resolved spectra of soliton centered at ~1558 nm; (b) oscilloscope traces; (c) polarization-resolved spectra of soliton centered at ~1530 nm.

Tables (1)

Tables Icon

Table 1 Comparison between the SnS2 and In2Se3 based fiber lasers