Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dual-wavelength wide area illumination Raman difference spectroscopy for remote detection of chemicals

Not Accessible

Your library or personal account may give you access

Abstract

Remote Raman instruments have become powerful analytical tools in some special environments. However, ambient daylight is the main limitation in the data acquisition process. To suppress daylight background interference and obtain a high signal-to-background ratio (SBR), we develop a dual-wavelength wide area illumination Raman difference spectroscopy (WAIRDS) system for daytime remote detection. In the WAIRDS system, a wide area illumination scheme and shifted-excitation Raman difference spectroscopy method are used to improve the reliability of collected Raman spectra. Measurements of polystyrene indicate that the WAIRDS system can be operated to obtain background-free Raman spectra under different levels of daylight background interference. The remote results show that the improvement in SBR is about three- to fivefold, and the system can work at distances of up to 9.2 m on a sunny afternoon. Moreover, to be close to the actual detection, the system is used for mineral and explosive raw material detection during daytime measurement. Measurements show that the WAIRDS system will be a useful tool for many remote applications in the future.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Dual-wavelength excitation combined Raman spectroscopy for detection of highly fluorescent samples

Jianfeng Ye, Jiarui Li, Minjian Lu, Xiaohua Qi, Boyi Li, Haoyun Wei, Yan Li, and Mingqiang Zou
Appl. Opt. 60(23) 6918-6927 (2021)

Capability of shifted excitation Raman difference spectroscopy under ambient daylight

Martin Maiwald, André Müller, Bernd Sumpf, Götz Erbert, and Günther Tränkle
Appl. Opt. 54(17) 5520-5524 (2015)

Surface-enhanced shifted excitation Raman difference spectroscopy for trace detection of fentanyl in beverages

Jianfeng Ye, Sheng Wang, Yujia Zhang, Boyi Li, Minjian Lu, Xiaohua Qi, Haoyun Wei, Yan Li, and Mingqiang Zou
Appl. Opt. 60(8) 2354-2361 (2021)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.