Abstract

For noisy images, in most existing sparse representation-based models, fusion and denoising proceed simultaneously using the coefficients of a universal dictionary. This paper proposes an image fusion method based on a cartoon + texture dictionary pair combined with a deep neural network combination (DNNC). In our model, denoising and fusion are carried out alternately. The proposed method is divided into three main steps: denoising + fusion + network denoising. More specifically, (1) denoise the source images using external/internal methods separately; (2) fuse these preliminary denoised results with external/internal cartoon and texture dictionary pair to obtain the external cartoon + texture sparse representation result (E-CTSR) and internal cartoon + texture sparse representation result (I-CTSR); and (3) combine E-CTSR and I-CTSR using DNNC (EI-CTSR) to obtain the final result. Experimental results demonstrate that EI-CTSR outperforms not only the stand-alone E-CTSR and I-CTSR methods but also state-of-the-art methods such as sparse representation (SR) and adaptive sparse representation (ASR) for isomorphic images, and E-CTSR outperforms SR and ASR for heterogeneous multi-mode images.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Image fusion via nonlocal sparse K-SVD dictionary learning

Ying Li, Fangyi Li, Bendu Bai, and Qiang Shen
Appl. Opt. 55(7) 1814-1823 (2016)

Regional multifocus image fusion using sparse representation

Long Chen, Jinbo Li, and C. L. Philip Chen
Opt. Express 21(4) 5182-5197 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (14)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription