Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Image fusion via nonlocal sparse K-SVD dictionary learning

Not Accessible

Your library or personal account may give you access

Abstract

Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Denoising infrared maritime imagery using tailored dictionaries via modified K-SVD algorithm

L. N. Smith, C. C. Olson, K. P. Judd, and J. M. Nichols
Appl. Opt. 51(17) 3941-3949 (2012)

Image decomposition fusion method based on sparse representation and neural network

Lihong Chang, Xiangchu Feng, Rui Zhang, Hua Huang, Weiwei Wang, and Chen Xu
Appl. Opt. 56(28) 7969-7977 (2017)

Multi-focus image fusion based on dictionary learning with rolling guidance filter

Xiang Yan, Hanlin Qin, and Jia Li
J. Opt. Soc. Am. A 34(3) 432-440 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.