Abstract

An exact algorithm based on the multishearing interferograms has been proposed to reconstruct a two-dimensional wavefront. It allows large shears and high resolution of the reconstructed wavefront to be achieved. In this paper, we use simultaneous linear equations to express the relationship between difference wavefronts and the unknown original wavefront, and then the least-squares method is applied to reconstruct the wavefront. To solve the memory problem, an improved wavefront reconstruction algorithm based on virtual subaperture stitching was proposed to improve the calculation efficiency. Lastly, numerical simulations are implemented and the proposed algorithm is compared with another modal and zonal method. The results indicate that the proposed algorithm is capable of reconstructing continuous or discontinuous wavefronts exactly with a large grid. Numerical simulation also shows high accuracy recovery capability of the proposed method in the existence of mixed noise.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High spatial resolution zonal reconstruction with modified multishear method in frequency domain

Dede Zhai, Shanyong Chen, and Feng Shi
Appl. Opt. 56(29) 8067-8074 (2017)

Exact wavefront recovery with tilt from lateral shear interferograms

Zi-qiang Yin
Appl. Opt. 48(14) 2760-2766 (2009)

High spatial resolution zonal wavefront reconstruction with improved initial value determination scheme for lateral shearing interferometry

Fengzhao Dai, Feng Tang, Xiangzhao Wang, Osami Sasaki, and Min Zhang
Appl. Opt. 52(17) 3946-3956 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription