Abstract
The spectral performance of freestanding resonant metal-mesh bandpass filters operating with center frequencies ranging from 585 GHz to 2.1 THz is presented. These filters are made up of a 12-μm-thick copper film with an array of cross-shaped apertures that fill a circular area with a 50-mm diameter. The filters exhibit power transmission in the range 97–100% at their respective center frequencies and stop-band rejection in excess of 18 dB. The theoretically predicted nondiffracting properties of the meshes are experimentally verified through high-resolution beam mapping. Scalability of the filter spectra with mesh dimensions is demonstrated over a wide spectral range. Several modeling methods are considered, and results from the models are shown.
© 1994 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (12)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription