Abstract

A new automated linearity tester with a single variable aperture has been designed and built. It uses piezoelectric motors to define precisely the apertures required for application of the double aperture method of light addition. This design avoids many of the inherent shortcomings of two fixed physically separated apertures, such as interference and coherence between two separated beams and the need for an averaging sphere to compensate for beam noncoincidence at the photoreceiver. It also permits the assessment of system nonlinearity for arbitrary flux levels over an ≈70:1 dynamic range without the use of a supplementary means of optical attenuation. The tester was specifically designed for use with the National Research Council of Canada Reference spectrophotometer, but it can be adapted for use with any instrument with a large stable measurement beam. The paper discusses the correct placement and operation of this device. The performance, as evaluated by nonlinearity measurements of a known highly linear silicon photodiode, shows a reliability of <1–3 parts in 104 over a 3400:1 dynamic range at a 97% confidence level. Several applications of this linearity tester to both photomultipliers and photodiodes are described. Transmittance results for several reference materials using these linearity corrected photodetectors are compared and show a typical agreement of better than 0.025% of the value.

© 1991 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and testing of a new high-accuracy ultraviolet–visible–near-infrared spectrophotometer

Joanne C. Zwinkels and Denis S. Gignac
Appl. Opt. 31(10) 1557-1567 (1992)

Spectrophotometer Linearity Testing Using the Double-Aperture Method

Klaus D. Mielenz and Ken L. Eckerle
Appl. Opt. 11(10) 2294-2303 (1972)

Testing Spectrophotometer Linearity

Alfred Reule
Appl. Opt. 7(6) 1023-1028 (1968)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription