Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Transmittance freezing of a random frozen photons beam in a turbulent ocean

Open Access Open Access

Abstract

By proposing a statistical averaging control function of the light intensity longitudinal profile and deriving the second moment of random complex weighting factors of Bessel-Gaussian beams, we derive the transmittance of a random frozen photons beam and analyze the freezing evolution characteristics of a random frozen photons beam as the parameters of the beam and channel of a turbulent ocean. It is concluded that the freezing characteristics of transmittance can be effectively improved by choosing beam parameters, such as, a larger number of superposition sub beams, a larger beam waist and a smaller quantum number of orbital angular momentum of the vortex mode. However, channel parameters, such as “equivalent temperature structure constant”, dissipation rate of the mean-squared temperature, dissipation rate of kinetic energy per unit mass of fluid, and the ratio of temperature and salinity can only affect the transmittance of a random frozen photons beam without changing the transmittance freezing characteristics. In addition, the influences of the inner and outer scales of turbulence on the transmittance freezing characteristics can be ignored.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Advances in underwater communication network construction, submarine remote control and resource telemetry have greatly advanced the research of underwater wireless optical communication, especially the research of underwater vortex carrier optical communication. However, for the underwater wireless vortex carrier optical communication working in water, especially seawater, the most difficult problems need to be solved are signal distortion caused by turbulence and signal energy reduction caused by absorption [1,2]. Therefore, up to now, many research results on the effect of oceanic turbulence and beam parameters on the transmitting of the vortex beam have been published [318]. These works reported in detail the influences of ocean turbulence on the average light intensity [36], light intensity transmittance [7], the received signal probability [2,814] and crosstalk probability of vortex modes [15], beam wander [16], and capacity [17,18] of turbulent channels with vortex beam as carrier, all the results provide a theoretical basis for weakening the negative effects of oceanic turbulence. However, these studies do not take into account the effect of seawater absorption on signal transmission, and, seawater absorption is inevitable. Therefore, the main motivation of this study is to analyze the disturbance characteristics of turbulent seawater on the signal transmission law in the presence of seawater absorption. It is noted that the finite energy “freeze wave” (FW) has the advantage of resisting absorption and diffraction of the medium and has no undesirable longitudinal period [19,20]. The finite-energy FW is formed by the suitable superposition of the co-propagating equal-order Bessel-Gauss (BG) beams with same frequency [21], and was realized in experiment by holographic setup in non-absorbing [22,23] or absorbing homogeneous media [24,25]. However, as the finite energy FW is used as the signal information carrier of underwater wireless optical communication system, whether the ability of this beam to resist absorption and diffraction can be maintained under the disturbance of seawater turbulence. Therefore, the absorption and diffraction resistance of finite-energy frozen waves in turbulent ocean is a topic worthy of discussion.

In this paper, considering that seawater is one of the turbulence and absorption media [26], we extend finite energy FW from a uniform absorption medium to turbulent absorbed seawater and call it a random frozen photons (RFP) beam and utilize the statistical moment method to determine the control function of longitudinal light intensity profile. By the control function of longitudinal light intensity profile, we present a model of the RFP beam in absorbed as well as turbulent seawater and analyze the freezing evolution characteristics of the RFP beam as the parameters of beam and channel of turbulent ocean.

2. Random frozen photons in a turbulent ocean

Seawater is an absorption medium, so the refractive index of seawater ${n_{oc}}$ should be described by complex refractive index, that is ${n_{oc}} = {\bar{n}_R} + \textrm{i}{\bar{n}_I}$. In cylindrical coordinates $({r,\theta ,z} )$, by eikonal approximation and superimposing 2M+1 BG beams of the same frequency as well as same order in different propagation angles, the amplitude of the FW in seawater can be describe by [21]

$$\begin{aligned}{u_{{l_0}}}({r,\theta ,z} )&= \frac{{{E_0}{B_{{l_0}}}}}{{1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}}}\exp \left[ {\textrm{i}k\left( {\frac{{{r^2}}}{{2{R_z}}}\textrm{ + }\frac{{{z^\textrm{2}}}}{{{R_z}}}} \right) - \frac{{{r^2}}}{{w_z^2}}\textrm{ + i}{l_0}\theta } \right]\\ &\quad\times \sum\limits_{m ={-} M}^M {{A_m}{\textrm{J}_{{l_0}}}\left( {\frac{{{\alpha_m}r}}{{1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}}}} \right)\exp \left[ { - \textrm{i}{\beta_m}\left( {\frac{z}{{{R_z}}} - 1} \right)z - \frac{{\alpha_m^2}}{{{k^2}w_z^2}}{z^2}} \right]} \end{aligned}$$
with transverse wave number
$${\alpha _m} = |{2k} |\sqrt {1 - {{{\beta _{mR}}} \mathord{\left/ {\vphantom {{{\beta_{mR}}} {{k_R}}}} \right.} {{k_R}}}}$$
where ${E_0}$ is constant, ${z_R} = {{kw_0^2} \mathord{\left/ {\vphantom {{kw_0^2} 2}} \right.} 2}$ is the Rayleigh distance, ${w_0}$ is the beam waist, $k = 2\pi {n_{oc}}\textrm{/}\lambda = {k_R} + \textrm{i}{k_I}$ is the complex wave number, $\lambda$ is the wavelength, ${\beta _m} = {\beta _{mR}} + \textrm{i}{\beta _{mI}}$ are the complex longitudinal wave number, $\textrm{i = }\sqrt { - \textrm{1}}$, ${\textrm{J}_{{l_0}}}({\cdot} )$ is the ${l_0}$-order Bessel function of the first kind and the OAM quantum number ${l_0}$ is also called topological charge number of vortex mode, r is the radial distance from the beam center in the received plane, $\theta$ is azimuth, z is the transmission distance, ${R_z} = z + {{z_R^2} \mathord{\left/ {\vphantom {{z_R^2} z}} \right.} z}$ is the radius of curvature, ${w_z} = {w_0}\sqrt {1 + {{({{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}} )}^2}}$ is the spatial radius of the BG beam at z, ${B_{{l_0}}} = 1/{\textrm{J}_{{l_0}}}{[{{{{\alpha_m}r} \mathord{\left/ {\vphantom {{{\alpha_m}r} {({1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}} )}}} \right.} {({1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}} )}}} ]_{\max }}$ and ${A_m}$ are complex weighting factors for each Bessel-Gaussian beam in the superposition.

Note: (1) ${\beta _{mR}} = Q + \textrm{2}\pi m/L$, and ${\beta _{mI}} = ({Q + \textrm{2}\pi m/L} ){{{{\bar{n}}_I}} \mathord{\left/ {\vphantom {{{{\bar{n}}_I}} {{{\bar{n}}_R}}}} \right.} {{{\bar{n}}_R}}}$ where Q is a constant that determines the radius of cylindrical surface ${r_\textrm{0}}$ via the first solution of ${ {[{\partial /({\partial r} )} ][{{\textrm{J}_{{l_\textrm{0}}}}({{\alpha_m}r} )} ]} |_{r = {r_0}}} = 0$ when ${l_\textrm{0}} \ne 0$, for ${l_\textrm{0}} = 1$, ${r_0} = {{1.841} \mathord{\left/ {\vphantom {{1.841} {\sqrt {{k^2} - \beta_m^2} }}} \right.} {\sqrt {{k^2} - \beta _m^2} }}$ [20]; (2) To ensure that the beam only propagates forward, ${\beta _{mR}}$ should be from 0 to $2\pi \sqrt {\bar{n}_R^2 - \bar{n}_I^2} /\lambda$ [21].

Furthermore, it is also noted that turbulent seawater is a random medium, and the random property of light in turbulent seawater can be described by statistical method [27]. Therefore, when the FW beam propagates in a turbulent ocean of weak signal fluctuation, FW is a random FW and is called a random frozen photons (RFP) beam. For RFP beam propagation in a turbulent ocean of weak signal fluctuation and by the Rytov approximation [28], we describe the amplitude of the RFP beam by the following function

$$\begin{aligned}{u_{{l_0}}}({r,\theta ,z} )&= \frac{{{E_0}{B_{{l_0}}}}}{{1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}}}\exp \left[ {\textrm{i}k\left( {\frac{{{r^2}}}{{2{R_z}}}\textrm{ + }\frac{{{z^\textrm{2}}}}{{{R_z}}}} \right) - \frac{{{r^2}}}{{w_z^2}}\textrm{ + i}\Psi ({r,\theta ,z} )\textrm{ + i}{l_0}\theta } \right]\\ &\quad\times \sum\limits_{m ={-} M}^M {{{\tilde{A}}_m}{\textrm{J}_{{l_0}}}\left( {\frac{{{\alpha_m}}}{{1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}}}r} \right)\exp \left[ {\left( {\frac{{{{\bar{n}}_I}}}{{{{\bar{n}}_R}}} - \textrm{i}} \right)\left( {\frac{z}{{{R_z}}} - 1} \right)\left( {Q + \frac{{\textrm{2}\pi m}}{L}} \right)z - \frac{{\alpha_m^2{z^2}}}{{{k^2}w_z^2}}} \right]} \end{aligned}$$
where $\Psi ({r,\theta ,z} )$ is the phase perturbation caused by turbulence and ${\tilde{A}_m}$ are random complex weighting factors for each Bessel-Gaussian beam in the superposition.

3. Signal intensity of a random frozen photons beam

For the RFP beam transmits in a turbulent ocean, we must use the method proposed in literature [28] to determine the superposition coefficient of the RFP beam in turbulent seawater. That is, from the statistical moment theory, the control function of light intensity longitudinal profile [19] of the RFP beam on a cylindrical surface of radius $r = {r_0}$ for $0 \le z \le L$ will is defined by the following equation

$$\left\langle {{{|{{u_{{l_0}}}({r = {r_0},\theta ,z} )} |}^2}} \right\rangle \approx \left\langle {{{|{\textrm{F}(z )} |}^\textrm{2}}} \right\rangle ,$$
where the symbol $\left\langle \cdot \right\rangle$ means the statistical average of the turbulence ensemble, and $\left\langle {{{|{\textrm{F}(z )} |}^2}} \right\rangle$ is called as the statistical averaging control function of light intensity longitudinal profile [19].

Besides, for the light propagation in the “window wavelength” region of a turbulent ocean, the transmission distance $z \ll {z_R}$ that means $w_z^2 = w_0^2[{1 + {{({{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}} )}^2}} ]\approx w_0^2$, and ${\textrm{J}_{{l_0}}}[{{{{\alpha_m}r} \mathord{\left/ {\vphantom {{{\alpha_m}r} {({1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}} )}}} \right.} {({1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}} )}}} ]\approx {\textrm{J}_{{l_0}}}({{\alpha_m}r} )$. As a result, we rewrite Eq. (3) as

$$\begin{aligned}{u_{{l_0}}}({r,\theta ,z} )&\approx \frac{{{E_0}{B_{{l_0}}}}}{{1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}}}\exp \left[ {\textrm{i}k\left( {\frac{{{r^2}}}{{2{R_z}}}\textrm{ + }\frac{{{z^\textrm{2}}}}{{{R_z}}}} \right) - \frac{{{r^2}}}{{w_\textrm{0}^\textrm{2}}}\left( {1 - \frac{{{z^\textrm{2}}}}{{z_R^2}}} \right)\textrm{ + i}\Psi ({r,\theta ,z} )+ \textrm{i}Qz + \textrm{i}{l_0}\theta } \right]\\ &\quad\times \sum\limits_{m ={-} M}^M {{{\tilde{A}}_m}} {\textrm{J}_{{l_0}}}\left( {\frac{{{\alpha_m}}}{{1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}}}r} \right)\exp \left[ { - \left( {Q + \frac{{\textrm{2}\pi m}}{L}} \right)\frac{{{{\bar{n}}_I}}}{{{{\bar{n}}_R}}}z - \frac{{\alpha_m^2{z^2}}}{{{k^2}w_\textrm{0}^\textrm{2}}}} \right]\exp \left( {\textrm{i}\frac{{\textrm{2}\pi m}}{L}z} \right) \end{aligned}.$$

Now, the statistical averaging control function of light intensity longitudinal profile can be expressed as

$$\begin{aligned}\left\langle {|{\textrm{F}(z)} |{{\kern 1pt}^2}} \right\rangle &\approx {\kern 1pt} \frac{{E_0^2w_\textrm{0}^\textrm{2}({k_R^2 + k_I^2} )}}{{w_\textrm{0}^\textrm{2}({k_R^2 + k_I^2} )+ 4z({{k_R} + z/w_\textrm{0}^\textrm{2}} )}}\left\langle {\exp [{\textrm{i}\Psi ({{r_\textrm{0}},\theta ,z} )- \textrm{i}{\Psi ^ \ast }({{r_\textrm{0}},\theta ,z} )} ]} \right\rangle \\ &\quad\times \sum\limits_{n ={-} N}^N {\sum\limits_{m ={-} M}^M {\left\langle {\tilde{A}_n^ \ast {{\tilde{A}}_m}} \right\rangle } } \exp \left\{ { - \frac{{8{k_I}({k_R^2 - k_I^2} )z}}{{w_\textrm{0}^\textrm{4}{{({k_R^2 + k_I^2} )}^2}}}\left( {{z^2} + \frac{{r_0^2}}{2}} \right) - \frac{{2r_0^2}}{{w_\textrm{0}^\textrm{2}}}\left[ {1 - \frac{{4{z^2}({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{4}{{({k_R^2 + k_I^2} )}^2}}}} \right]} \right\}\\ &\quad\times \exp \left[ { - \frac{{({\alpha_m^2 + \alpha_n^{ {\ast} 2}} )({k_R^2 - k_I^2} )+ \textrm{i}2{k_R}{k_I}({\alpha_n^{ {\ast} 2} - \alpha_m^2} )}}{{w_\textrm{0}^\textrm{2}{{({k_R^2 + k_I^2} )}^2}}}{z^2}} \right]\\ &\quad\times \exp [{\textrm{i2}\pi ({m - n} )z/L - 2({Q + ({m - n} )\pi /L} ){{\bar{n}}_I}z/{{\bar{n}}_R}} ]\end{aligned}$$
where $\left\langle {\tilde{A}_n^ \ast {{\tilde{A}}_m}} \right\rangle$ is the second moment of random complex weighting factors for each Bessel-Gaussian beam in the superposition.

Further, for moderate-absorption medium, ${\bar{n}_I} \ll {\bar{n}_R}$, so ${k_I} \ll {k_R}$, and when ${r_0} \ll z$, we have

$$\left\{ \begin{array}{l} - \frac{{8{k_I}({k_R^2 - k_I^2} )z}}{{w_\textrm{0}^\textrm{4}{{({k_R^2 + k_I^2} )}^2}}}\left( {{z^2} + \frac{{r_0^2}}{2}} \right) \approx{-} 2{k_I}z\left( {\frac{{{z^2}}}{{{{|{{z_R}} |}^2}}}} \right) \approx 0\\ \frac{{4z}}{{w_\textrm{0}^\textrm{2}({k_R^2 + k_I^2} )}}\left( {{k_R} + \frac{z}{{w_\textrm{0}^\textrm{2}}}} \right) \approx \frac{{2z}}{{|{{z_R}} |}} + \frac{{{z^2}}}{{{{|{{z_R}} |}^2}}} \approx 0 \end{array} \right.$$

Then, the statistical averaging control function of light intensity longitudinal profile can be simplified as

$$\begin{aligned}\left\langle {|{\textrm{F}(z)} |{{\kern 1pt}^2}} \right\rangle &\approx {\kern 1pt} E_0^2{\kern 1pt} \exp \left\{ { - \frac{{2r_0^2}}{{w_\textrm{0}^\textrm{2}}}\left[ {1 - \frac{{4{z^2}({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{4}{{({k_R^2 + k_I^2} )}^2}}}} \right]} \right\}\left\langle {\exp [{\textrm{i}\Psi ({{r_\textrm{0}},\theta ,z} )- \textrm{i}{\Psi ^ \ast }({{r_\textrm{0}},\theta ,z} )} ]} \right\rangle {\kern 1pt} \\ &\quad\times \sum\limits_{n ={-} N}^N {\sum\limits_{m ={-} M}^M {\left\langle {\tilde{A}_n^ \ast {{\tilde{A}}_m}} \right\rangle } } \exp \left[ { - \frac{{({\alpha_m^2 + \alpha_n^{ {\ast} 2}} )({k_R^2 - k_I^2} )+ \textrm{i}2{k_R}{k_I}({\alpha_n^{ {\ast} 2} - \alpha_m^2} )}}{{w_\textrm{0}^\textrm{2}{{({k_R^2 + k_I^2} )}^2}}}{z^2}} \right]\\ &\quad\times \exp [{\textrm{i2}\pi ({m - n} )z/L - 2({Q + ({m + n} )\pi /L} )z{{\bar{n}}_I}/{{\bar{n}}_R}} ]\end{aligned}$$
where $\left\langle {\exp [{\textrm{i}\Psi ({{r_\textrm{0}},\theta ,z} )- \textrm{i}{\Psi ^ \ast }({{r_\textrm{0}},\theta ,z} )} ]} \right\rangle$ represents the coherence function of the phase fluctuations and is given by [27]
$$\left\langle {\exp [{\textrm{i}\Psi ({{r_\textrm{0}},\theta ,z} )- \textrm{i}{\Psi ^ \ast }({{r_\textrm{0}},\theta ,z} )} ]} \right\rangle = \exp ({ - r_\textrm{0}^\textrm{2}/\rho_{\textrm{oc}}^2} )$$

In Eq. (9), ${\rho _{oc}}$ is the coherence length of a plane wave propagating in the turbulent ocean and is given by [29]

$${\rho _{oc}}\textrm{ = }{\left[ {{\pi^2}{k^2}z\int_0^\infty {{\kappa^3}{\Phi _\textrm{n}}(\kappa )\textrm{d}\kappa } } \right]^{ - 1/2}}$$
where $\kappa$ is the spatial wave number, ${\Phi_{n}}$ is the power spectrum of oceanic refractive index fluctuations, and it is given by [30]
$$\begin{aligned} {\Phi _n}(\kappa )&= 1.69\textrm{C}_m^2\gamma \frac{{[{1 + {C_1}{{({\kappa \eta } )}^{2/3}}} ]}}{{\pi {\varpi ^2}{{({{\kappa^2} + \kappa_0^2} )}^{11/6}}}}[{{\varpi^2}\exp ({ - {\kappa^2}{\eta^2}/R_T^2} )} \\ &\quad + d_r^{ - 1}\exp ({ - {\kappa^2}{\eta^2}/R_S^2} )- ({1 + d_r^{ - 1}} )\varpi {\exp ({ - {\kappa^2}{\eta^2}/R_{TS}^2} )} ],\quad 0 < \kappa < \infty , \end{aligned}$$
and
$${d_r} = \frac{{|\varpi |}}{{{R_F}}} \approx \left\{ \begin{array}{ll} 1/\left( {1 - \sqrt {({1 - 1/|\varpi |} )} } \right)& |\varpi |\ge 1\\ 1.85|\varpi |- 0.85 & 0.5 \le |\varpi |\le 1\quad ,\\ 0.15|\varpi |& |\varpi |\le 0.5 \end{array} \right.$$
where $C_m^2 = {10^{ - 8}}{\varepsilon ^{ - 1/3}}{\chi _T}$ is the “temperature structure” constant that denotes the temperature fluctuation strength of seawater turbulence for given $\varpi $, $\varpi $ defines the ratio of temperature and salinity contributions to the refractive index spectrum, which can vary in the interval [−5,0] in the seawater, with $- 5$ and $0$ corresponding to dominating temperature-induced and salinity-induced optical turbulence [24], respectively, $\varepsilon $ is the dissipation rate of kinetic energy per unit mass of fluid ranging from ${10^{ - 10}}{{{\textrm{m}^2}} \mathord{\left/ {\vphantom {{{\textrm{m}^2}} {{\textrm{s}^3}}}} \right.} {{\textrm{s}^3}}}$ to ${10^{ - 1}}{{{\textrm{m}^2}} \mathord{\left/ {\vphantom {{{\textrm{m}^2}} {{\textrm{s}^3}}}} \right.} {{\textrm{s}^3}}}$, ${\chi _T}$ is the dissipation rate of the mean-squared temperature and has the range from ${10^{ - 10}}{{{{\rm K}^2}} \mathord{\left/ {\vphantom {{{{\rm K}^2}} \textrm{s}}} \right.} \textrm{s}}$ to ${10^{ - 4}}{{{{\rm K}^2}} \mathord{\left/ {\vphantom {{{{\rm K}^2}} \textrm{s}}} \right.} \textrm{s}}$, $\gamma$ is the Obukhov-Corrsin constant, ${R_F}$ is the eddy flux ratio, $\kappa $ is the spatial frequency of turbulent fluctuations, ${\kappa _0} = 2\pi /{L_0}$, ${L_0}$ is the outer scale of turbulence, ${C_1}$ is a free parameter, ${R_{T,\,S,\,\,TS}} = \sqrt 3 {[{W_{T,\,S,\,\,TS}} - 1/3 + 1/(9{W_{T,\,S,\,\,TS}})]^{3/2}}/{q^{3/2}},\,$\[q\] is the non-dimensional constant, ${W_{T,\,S,\,\,TS}} = {\{ {[\Pr _{T,\,S,\,\,TS}^2/{(6\gamma {q^{ - 2}})^2} - {\Pr _{T,\,S,\,\,TS}}/81\gamma {q^{ - 2}}]^{1/2}} - [1/27 - {\Pr _{T,\,S,\,\,TS}}/(6\gamma {q^{ - 2}})]\} ^{1/3}}$, ${\Pr _T}$ and ${\Pr _S}$ represent the Prandtl numbers of the temperature and salinity respectively, $\eta$ is the inner scale, and ${\Pr _{TS}} = 2{\Pr _T}{\Pr _S}/({\Pr _T} + {\Pr _S})$.

By the integral expression of the confluent hypergeometric function of the second kind $\textrm{U}({a;b;c} )$ [31]

$$\textrm{U}\left( {\mu + \frac{1}{2};\mu - \frac{1}{3};\frac{{\kappa_0^2}}{{\kappa_H^2}}} \right) = \frac{1}{{\kappa _0^{2\mu - 8/3}\Gamma ({\mu + 1/2} )}}\int_0^\infty {{\kappa ^{2\mu }}} \exp ({ - {\kappa^2}/\kappa_H^2} ){({\kappa_0^2 + {\kappa^2}} )^{ - 11/6}}\textrm{d}\kappa ,$$
the coherence length of plane wave ${\rho _{oc}}$ can be expressed as
$$\begin{aligned} {\rho _{oc}} &= \left( {\frac{{169{\omega^2}}}{{200{c^2}}}({\bar{n}_r^2 + \bar{n}_i^2} )\pi z\gamma \textrm{C}_m^2} \right.\left\{ {\kappa_0^{1/3}\left[ {\textrm{U}\left( {2;\frac{7}{6};\frac{{\kappa_0^2{\eta^2}}}{{R_T^2}}} \right) + \frac{1}{{{d_r}{\varpi^2}}}\textrm{U}\left( {2;\frac{7}{6};\frac{{\kappa_0^2{\eta^2}}}{{R_S^2}}} \right)} \right.} \right.\\ &\quad - \left. {\frac{{1 + {d_r}}}{{\varpi {d_r}}}\textrm{U}\left( {2;\frac{7}{6};\frac{{\kappa_0^2{\eta^2}}}{{R_{TS}^2}}} \right)} \right]{\kern 1pt} {\kern 1pt} + {C_1}{\eta ^{2/3}}{\kappa _0}\Gamma \left( {\frac{7}{3}} \right)\left[ {\textrm{U}\left( {\frac{7}{3};\frac{3}{2};\frac{{\kappa_0^2{\eta^2}}}{{R_T^2}}} \right)} \right.\\ &\quad + {\left. {\left. {\left. {\frac{1}{{{d_r}{\varpi^2}}}\textrm{U}\left( {\frac{7}{3};\frac{3}{2};\frac{{\kappa_0^2{\eta^2}}}{{R_S^2}}} \right) - \frac{{1 + {d_r}}}{{\varpi {d_r}}}\textrm{U}\left( {\frac{7}{3};\frac{3}{2};\frac{{\kappa_0^2{\eta^2}}}{{R_{TS}^2}}} \right)} \right]} \right\}} \right)^{ - \frac{1}{2}}}. \end{aligned}$$

Substituting Eq. (9) and Eq. (14) into Eq. (8), we have analytic approximate relation of the statistical averaging control function of light intensity longitudinal profile

$$\begin{aligned}\left\langle {|{\textrm{F}(z)} |{{\kern 1pt}^2}} \right\rangle &\approx {\kern 1pt} E_0^2\exp \left\{ { - \frac{{2r_0^2}}{{w_\textrm{0}^\textrm{2}}}\left[ {1 - \frac{{4{z^2}({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{4}{{({k_R^2 + k_I^2} )}^2}}} - \frac{{r_0^2}}{{\rho_{oc}^2}}} \right]} \right\}\sum\limits_{n ={-} N}^N {\sum\limits_{m ={-} M}^M {\left\langle {\tilde{A}_n^ \ast {{\tilde{A}}_m}} \right\rangle } } \exp \left[ {\textrm{i}\frac{{\textrm{2}\pi }}{L}({m - n} )z} \right]\\ &\quad \times \exp \left[ { - 2\left( {Q + \frac{{m + n}}{L}\pi } \right)\frac{{{{\bar{n}}_I}}}{{{{\bar{n}}_R}}}z - \frac{{({\alpha_m^2 + \alpha_n^{ {\ast} 2}} )({k_R^2 - k_I^2} )+ \textrm{i}2{k_r}{k_i}({\alpha_n^{ {\ast} 2} - \alpha_m^2} )}}{{w_\textrm{0}^\textrm{2}{{({k_R^2 + k_I^2} )}^2}}}{z^2}} \right] \end{aligned}$$

Moreover, for the RFP beam propagating in a turbulent ocean, $Q \sim {k_r} > > \pi ({m + n} )/L$, ${\beta _{mR}}$ is approximately equal to ${\bar{\beta }_R}$ [21], that is, ${\beta _{mR}}$ is given by

$${\beta _{mR}} \approx {\bar{\beta }_R}\textrm{ = }\sum\limits_{m ={-} M}^M {\frac{{{\beta _{mR}}}}{{2M + 1}}} = Q,$$
and the remaining wave numbers can be approximated as
$${\beta _{mI}} \approx Q{\bar{n}_I}/{\bar{n}_R} = {\beta _{0I}}, {\alpha _m} \approx |{2k} |\sqrt {1 - {\beta _{0I}}/{k_R}} = {\alpha _0}.$$

By above analysis, the Eq. (15) can be simplified as

$$\begin{aligned}\sum\limits_{n ={-} N}^N {\sum\limits_{m ={-} M}^M {\left\langle {{{\tilde{A}}_m}\tilde{A}_n^ \ast } \right\rangle } } \left[ {\textrm{i}\frac{{\textrm{2}\pi }}{L}({m - n} )z} \right] &\approx \frac{{\left\langle {|{\textrm{F}(z)} |{{\kern 1pt}^2}} \right\rangle }}{{E_0^2}}{\kern 1pt} \exp \left\{ {\frac{{2r_0^2}}{{w_\textrm{0}^\textrm{2}}}\left[ {1 - \frac{{4{z^2}({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{4}{{({k_R^2 + k_I^2} )}^2}}}} \right]} \right.\\ &\quad + \left.{\frac{{r_0^2}}{{\rho_{oc}^2}} + 2Q\frac{{{{\bar{n}}_I}}}{{{{\bar{n}}_R}}}z + \frac{{2\alpha_0^2({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{2}{{({k_R^2 + k_I^2} )}^2}}}{z^2}} \right\} \end{aligned}$$

Multiplying the factor $\exp [{ - \textrm{i}{{\textrm{2}\pi } \mathord{\left/ {\vphantom {{\textrm{2}\pi } L}} \right.} L}({m^{\prime} - n^{\prime}} )z} ]$ and integrating the z on both sides of the above formula, we have the second moment of random complex weighting factors for each Bessel-Gaussian beam in the superposition $\left\langle {\tilde{A}_n^ \ast {{\tilde{A}}_m}} \right\rangle$

$$\begin{aligned} \left\langle {{{\tilde{A}}_m}\tilde{A}_n^ \ast } \right\rangle &= \frac{1}{{LE_0^2}}\int_0^L {\left\langle {|{\textrm{F}(z)} |{{\kern 1pt}^2}} \right\rangle \exp \left\{ {\left[ {\frac{{2({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{2}{{({k_R^2 + k_I^2} )}^2}}}\left( {\alpha_0^2 - \frac{{4r_0^2}}{{w_\textrm{0}^\textrm{4}}}} \right)} \right]{z^2}} \right.} \\ &\quad + 2Q\frac{{{{\bar{n}}_I}}}{{{{\bar{n}}_R}}}z + {r_0^2/\rho_{oc}^2 - \textrm{i2}\pi ({m - n} )z/L + 2r_0^2/w_\textrm{0}^\textrm{2}} \}\textrm{d}z \end{aligned}$$

To eliminate unwanted longitudinal periodicity of light intensity [20], by $\exp \left\{ {\left[ {\frac{{2({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{2}{{({k_R^2 + k_I^2} )}^2}}}\left( {\alpha_0^2 - \frac{{4r_0^2}}{{w_\textrm{0}^\textrm{4}}}} \right)} \right]{z^2}} \right\} = \sum\limits_{p = 0}^\infty {\frac{{{{(z )}^{2p}}}}{{p!}}{{\left[ {\frac{{2({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{2}{{({k_R^2 + k_I^2} )}^2}}}\left( {\alpha_0^2 - \frac{{4r_0^2}}{{w_\textrm{0}^\textrm{4}}}} \right)} \right]}^p}}$, we have another new result proposed and derived in this paper

$$\begin{aligned} \left\langle {{{\tilde{A}}_m}\tilde{A}_n^ \ast } \right\rangle &= \frac{1}{{LE_0^2}}\int_0^L {\left\langle {|{\textrm{F}(z)} |{{\kern 1pt}^2}} \right\rangle \sum\limits_{p = 0}^\infty {{{\left[ {\frac{{2({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{2}{{({k_R^2 + k_I^2} )}^2}}}\left( {\alpha_0^2 - \frac{{4r_0^2}}{{w_\textrm{0}^\textrm{4}}}} \right)} \right]}^p}\frac{{{{(z )}^{2p}}}}{{p!}}} } \\ &\times \exp \left\{ {\left[ {2Q\frac{{{{\bar{n}}_I}}}{{{{\bar{n}}_R}}} + r_0^2\rho_0^2 - \textrm{i}\frac{{\textrm{2}\pi ({m - n} )}}{L}} \right]z + \frac{{2r_0^2}}{{w_0^2}}} \right\}\textrm{d}z \end{aligned}$$
where $\rho _0^2 = {1 \mathord{\left/ {\vphantom {1 {({z\rho_{oc}^2} )}}} \right.} {({z\rho_{oc}^2} )}}$. Finally, the main results of this paper are obtained
$$\begin{aligned} I({r,\theta ,z} ) &= \frac{{E_\textrm{0}^\textrm{2}B_{_{{l_0}}}^2}}{{1 + {{({{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}} )}^\textrm{2}}}}\exp \left[ { - \frac{{{r^2}}}{{\rho_{oc}^2}} - \frac{{2{r^2}}}{{w_z^2}}} \right]\sum\limits_{n ={-} N}^N {\sum\limits_{m ={-} M}^M {\left\langle {\tilde{A}_n^ \ast {{\tilde{A}}_m}} \right\rangle {\textrm{J}_{{l_0}}}\left( {\frac{{{\alpha_m}r}}{{1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}}}} \right){\textrm{J}_{{l_0}}}\left( {\frac{{\alpha_n^ \ast r}}{{1 - \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}}}} \right)} } \\ &\quad\times \exp \left\{ {\left[ { - \textrm{i}\frac{{2\pi }}{L}({m - n} )\left( {\frac{z}{{{R_z}}} - 1} \right)z + 2\frac{{{{\bar{n}}_I}}}{{{{\bar{n}}_R}}}\left( {Q + \frac{{m + n}}{L}\pi } \right)} \right]\left( {\frac{z}{{{R_z}}} - 1} \right)z - \frac{{\alpha_m^2 + \alpha_n^{ {\ast} 2}}}{{{k^2}w_z^2}}{z^2}} \right\} \end{aligned}$$
And the transmittance of the RFP beam in a turbulent ocean is given by ${T_I} = {{I({r,\theta ,z} )} \mathord{\left/ {\vphantom {{I({r,\theta ,z} )} {I({r,\theta ,z = 0} )}}} \right.} {I({r,\theta ,z = 0} )}}$.

Further, for $F(z )= {F_0} = \textrm{constant,}{\kern 1pt} {\kern 1pt} {\kern 1pt} \textrm{0} \le z \le L$, and by the integral formula [31]

$$\int {{x^h}\exp ({a{x^b}} )dx} = \frac{{\exp (a{x^b})}}{b}\left[ {({\gamma - 1} )!\sum\limits_{q = 0}^{\gamma - 1} {{{({ - 1} )}^{({q + 1 - \gamma } )}}\frac{{{x^{bq}}}}{{q!{a^{\gamma - q}}}}} } \right],\left( {a \ne 0,{\kern 1pt} \gamma = \frac{{h + 1}}{b} = 1,2,\ldots } \right),$$
$\left\langle {{{\tilde{A}}_m}\tilde{A}_n^ \ast } \right\rangle$ is simplified as
$$\begin{aligned}\left\langle {{{\tilde{A}}_m}\tilde{A}_n^ \ast } \right\rangle & = \frac{{{\textrm{F}_0}}}{{LE_0^2}}\sum\limits_{p = 0}^\infty {{{\left[ {\frac{{2({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{2}{{({k_R^2 + k_I^2} )}^2}}}\left( {\alpha_0^2 - \frac{{4r_0^2}}{{w_\textrm{0}^\textrm{4}}}} \right)} \right]}^p}\frac{{({2p} )!}}{{p!}}} \\ &\quad\times \exp \left\{ {\left[ {2Q\frac{{{{\bar{n}}_I}}}{{{{\bar{n}}_R}}} + r_0^2\rho_0^2 - \textrm{i}\frac{{\textrm{2}\pi ({m - n} )}}{L}} \right]L} \right\}\sum\limits_{q = 0}^{2p} {\frac{{{{({ - 1} )}^{({q - 2p} )}}{L^q}}}{{q!{a^{2p + 1 - q}}}}} \end{aligned}$$
where $a = {{2Q{{\bar{n}}_I}} \mathord{\left/ {\vphantom {{2Q{{\bar{n}}_I}} {{{\bar{n}}_R}}}} \right.} {{{\bar{n}}_R}}} + r_0^2\rho _0^2 - \textrm{i}{{\textrm{2}\pi ({m - n} )} \mathord{\left/ {\vphantom {{\textrm{2}\pi ({m - n} )} L}} \right.} L}$.

Now, the light intensity of the RFP beam in a turbulent ocean is simplified as

$$\begin{aligned} I({r,\theta ,z} ){\kern 1pt} &=\frac{{{F_0}B_{_{{l_0}}}^2}}{{L[{1 + {{({{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}} )}^\textrm{2}}} ]}}\exp \left[ { - \frac{{{r^2}}}{{\rho_{oc}^2}} - \frac{{2{r^2}}}{{w_z^2}}} \right]\\ &\times \sum\limits_{n ={-} N}^N {\sum\limits_{m ={-} M}^M {{\textrm{J}_{{l_0}}}\left( {\frac{{{\alpha_m}r}}{{1 + \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}}}} \right){\textrm{J}_{{l_0}}}\left( {\frac{{\alpha_n^ \ast r}}{{1 - \textrm{i}{z \mathord{\left/ {\vphantom {z {{z_R}}}} \right.} {{z_R}}}}}} \right)\sum\limits_{p = 0}^\infty {{{\left[ {\frac{{2({k_R^2 - k_I^2} )}}{{w_\textrm{0}^\textrm{2}{{({k_R^2 + k_I^2} )}^2}}}\left( {\alpha_0^2 - \frac{{4r_0^2}}{{w_\textrm{0}^\textrm{4}}}} \right)} \right]}^p}\frac{{({2p} )!}}{{p!}}} } } \\ &\times \exp \left[ {\left( {2Q\frac{{{{\bar{n}}_I}}}{{{{\bar{n}}_R}}} + r_0^2\rho_0^2 - \textrm{i}\frac{{\textrm{2}\pi ({m - n} )}}{L}} \right)L} \right]\sum\limits_{q = 0}^{2p} {\frac{{{{({ - 1} )}^{({q - 2p} )}}{L^q}}}{{q!{a^{2p + 1 - q}}}}} \\ &\times \exp \left\{ {\left[ { - \textrm{i}\frac{{2\pi }}{L}({m - n} )\left( {\frac{z}{{{R_z}}} - 1} \right)z + 2\frac{{{{\bar{n}}_I}}}{{{{\bar{n}}_R}}}\left( {Q + \frac{{m + n}}{L}\pi } \right)} \right]\left( {\frac{z}{{{R_z}}} - 1} \right)z - \frac{{\alpha_m^2 + \alpha_n^{ {\ast} 2}}}{{{k^2}w_z^2}}{z^2}} \right\} \end{aligned}$$

4. Effects of a turbulent ocean and beam parameters on light transmittance

In this section, we analyze the diffracting- and absorption- resistance of the RFP beam in turbulent and absorbent seawater by numerically calculation. In the following discussion, unless otherwise specified, the parameters are set as: $\lambda = 410\textrm{nm}$, ${m_0} = 1$, ${w_0} = 0.5{\mathop{\rm m}\nolimits}$, ${r_0} = 4.9806 \times {10^{ - 4}}{\mathop{\rm m}\nolimits}$, $r = {r_0}$, $L = 350{\mathop{\rm m}\nolimits}$, $M = 18$, $Q = 0.9999999838{k_r}$, $\varpi ={-} 1$, $\eta = 0.001{\mathop{\rm m}\nolimits}$, ${L_0} = 10{\mathop{\rm m}\nolimits}$, ${C_1} = 2.35$, $q = 2.5$, $\gamma = 0.72$, ${\Pr _T} = 7$, $\textrm{P}{\textrm{r}_S} = 700$, ${\bar{n}_r} = 1.34$, ${\bar{n}_\textrm{i}} = 1.0114 \times {10^{ - 10}}$, ${\Lambda _{{m_0}}} = \textrm{1/}0.5819$, and $C_m^2 = {10^{ - 16}}{{\mathop{\rm m}\nolimits} ^{{{ - 2} \mathord{\left/ {\vphantom {{ - 2} 3}} \right.} 3}}}$. Besides, $|{\textrm{F}(z)} |{{\kern 1pt} ^2}$ is designed as $|{\textrm{F}(z)} |{{\kern 1pt} ^2} = 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \textrm{for}\;\textrm{0} \le z < L$.

Since the RFP beam is constructed by superimposing 2M+1 BG beams, it is necessary to study the effect of superimposing number of beams M on signal transmittance ${T_I}$. The beam waist ${w_0}$ and OAM quantum numbers ${l_0}$ are tentatively set at 0.2m and 1, respectively, and for given other parameters and constitute conditions of frozen beams [19,20], the maximum superimposing numbers is M=18. For comparison, we plot ${T_I}$ of the BG beam under different r and z in Fig. 1(a) and plot ${T_I}$ of the RFP beam under different r, z and M in Figs. 1(b), 1(c), and 1(d). Figures 1(a) and 1(b) show that, as we expected, the evolution of the ${T_I}$ of the BG beam and single RFP beam over z and r is almost the same: In the transmission direction, the ${T_I}$ of the BG beam and the RFP beam for M=0 both decrease with the increase of the z, which does not reach what we expected, that is, frozen transmittance; in the radial direction, they are both periodic, which means the transverse light intensity distribution of the RFP beam for M=0 is always light and shade rings with dark hollow center, and the brightness of the halo gradually decreases along the radial direction. But, from Figs. 1(b) and 1(c), we can see that as the superimposing number of the RFP beam increases, the ${T_I}$ is getting closer and closer to freezing in z direction, and the dark ring part of the ${T_I}$ in r direction gradually disappears. This can be explained by the redistribution of energy caused by the superposition of multiple BG beams. Therefore, the larger M is good for forming the RFP beam with a stable and continuous transmittance.

 figure: Fig. 1.

Fig. 1. Transmittance ${T_I}$ of a random frozen photons beam transmitting in a turbulent ocean versus the propagation z and radial coordinate r for the different superimposing numbers M.

Download Full Size | PDF

To optimize the beam parameters of the RFP beam, in Fig. 2, we show the influences of different OAM quantum numbers ${l_0}$ and beam waists ${w_0}$ on the ${T_I}$ of the RFP beam in a turbulent ocean. Figures 2(a), 2(b), 2(c) and 2(d) show that, for given beam parameters $M = 18$ and ${l_0} = 1$, as ${w_0}$ increases, the ${T_I}$ tends to stabilize and and stays at 0.5 when ${w_0}=0.5\textrm{m}$ within the propagation distance 300m, that is, the freezing of the light transmittance is achieved. In addition, for given beam parameters $M = 18$ and ${w_0} = 0.5\textrm{m}$, as ${l_0}$ increases, ${T_I}$ loses its freezing properties in z direction, and in r direction the signal strength outside the bright ring gradually disappears. Therefore, the optimal light source parameters of the RFP beam can obtain by choosing larger M and ${w_0}$, as well as smaller ${l_0}$.

 figure: Fig. 2.

Fig. 2. Transmittance ${T_I}$ of a random frozen photons beam transmitting in a turbulent ocean versus the propagation z and radial coordinate r for the different beam waists ${w_0}$ in (a), (b), (c), (d) and for different OAM quantum numbers ${l_0}$ in (c), (e), (f).

Download Full Size | PDF

Now, we focus on the effect of the equivalent “temperature structure” constants $C_\textrm{m}^\textrm{2}$ on the ${T_I}$ of RFP beam transmitting in a turbulent ocean. As showed in Figs. 3(a), 3(b) and 3(c), as the $C_\textrm{m}^\textrm{2}$ increases from $\textrm{1}{\textrm{0}^{ - 18}}{\textrm{m}^{ - 2/3}}$ to $\textrm{1}{\textrm{0}^{ - 16}}{\textrm{m}^{ - 2/3}}$ in weak turbulence, ${T_I}$ of the RFP beam is freezing. But when $C_\textrm{m}^\textrm{2}$ increases to $\textrm{1}{\textrm{0}^{ - 14}}{\textrm{m}^{ - 2/3}}$ in moderate turbulence, the ${T_I}$ in r direction disappears, and the ${T_I}$ in z direction also decreases significantly. Although the transmittance decreases with the increase of turbulent strength, nevertheless, the ${T_I}$ in z direction still is freezing, which implies that the change of turbulent strength can only affect the value of the ${T_I}$ of the RFP beam, but cannot alter its freezing properties in the transmission direction. Besides, in Fig. 3(d) we also study the influence of the dissipation rate of the mean-squared temperature ${\chi _T}$ and the rate of dissipation of kinetic energy per unit mass of fluid $\varepsilon$ on the ${T_I}$ of the RFP beam at $z = 30\textrm{m}$, and $z = 330\textrm{m}$. Fig. 3(d) shows that the ${T_I}$ increases with the increase of the $\varepsilon$ and the decrease of ${\chi _T}$, which is because the larger $\varepsilon$ or smaller ${\chi _T}$ corresponds to the weaker ocean turbulence.

 figure: Fig. 3.

Fig. 3. Transmittance ${T_I}$ of a random frozen photons beam in a turbulent ocean versus the propagation distance z and radial coordinate r for different equivalent “temperature structure” constants in (a), (b), (c) and versus the dissipation rate of the mean-squared temperature ${\chi _T}$ and the rate of dissipation of kinetic energy per unit mass of fluid $\varepsilon$ at $z\textrm{ = 30}$ and 330 m in (d).

Download Full Size | PDF

Figure 4 gives the influences of the different ratio of temperature and salinity $\varpi $ on the ${T_I}$ of the RFP beam transmitting in a turbulent ocean. From Figs. 4(a), 4(b) and 4(c), we can see that, as the $\varpi $ increases from -5, -1, to -0.5 that corresponds to temperature fluctuation dominating, common effect of temperature and salty fluctuations, and salty fluctuation dominating, the transmittance distributions in these three states are almost the same. Further, as the $\varpi $ increases to -0.1, the oceanic turbulence almost completely arises from salinity fluctuation, in this case, the ${T_I}$ in r direction outside the bright ring disappears, and the ${T_I}$ in z direction also decreases significantly. Therefore, we can draw a conclusion that ${T_I}$ of the RFP beam in a turbulent ocean will significantly decrease when the turbulence is almost entirely dominated by salinity fluctuation, but the transmittance freezing will not be destroyed.

 figure: Fig. 4.

Fig. 4. Light transmittance ${T_I}$ of a random frozen photons beam transmitting in a turbulent ocean versus the propagation z and radial coordinate r for the different ratio of temperature and salinity $\varpi $.

Download Full Size | PDF

Figure 5 gives the influences of different inner scales ${\eta _0}$ and outer scales ${\eta _c}$ of turbulence on the ${T_I}$ of the RFP beam in a turbulent ocean. From Fig. 5, we can see that as the ${\eta _0}$ increases from 1mm to 50mm for ${\eta _c} = 10\textrm{m}$, and the ${\eta _c}$ increases from 10m to 50m for ${\eta _0} = 50\textrm{mm}$, the transmittance distribution is almost constant, which means that the effects of the inner and outer scales of oceanic turbulence on the transmittance ${T_I}$ of the RFP beam is small enough to ignore.

 figure: Fig. 5.

Fig. 5. Light transmittance ${T_I}$ of a random frozen photons beam transmitting in a turbulent ocean versus the propagation z and radial coordinate r for the different inner scales ${\eta _0}$ and outer scales ${\eta _c}$ of turbulence.

Download Full Size | PDF

5. Conclusions

A random frozen photons beam is the superposition of multiple Bessel-Gaussian beams with light intensity longitudinal profile controllable superposition coefficient. So transmittance profile of a random frozen photons beam can be arbitrarily tailored along the beam’s axis of propagation. In this paper, we extended the theory of finite energy FW in uniform absorption medium to turbulent seawater and constructed the transmittance of the RFP beam in ocean turbulence. Our study shows that the RFP beam has better transmittance freezing characteristics than a BG beam. The RFP beam with optimized number of superposition sub beams M, beam waist ${w_0}$ and OAM quantum number ${l_0}$ can maintain freezing characteristics in a fairly long turbulent transport channel for seawater, and this freezing characteristics will not be destroyed by the variation of turbulent parameters $C_\textrm{m}^\textrm{2}$, ${\chi _T}$, $\varepsilon$, and $\varpi $. Besides, like other beam [218], the salinity fluctuation affects the transmittance of RFP beam more than the temperature fluctuation does, and, the influences of ${\eta _0}$ and ${\eta _c}$ of oceanic turbulence on the transmittance of the RFP beam are negligible. The conclusion of this paper is that, although the RFP beam is obtained by shaping the BG beam, the RFP beam will freeze transmission in over a longer turbulent ocean link than that of the BG beam.

Funding

National Natural Science Foundation of China (Grant No. 61871202).

Acknowledgments

We also sincerely thank the editors and reviewers for their innovative, scientific and readable review of this article.

Disclosures

The authors declare no conflicts of interest.

References

1. X. Sun, C. Kang, M. Kong, O. Alkhazragi, Y. Guo, M. Ouhssain, Y. Weng, B. H. Jones, T. K. Ng, and B. S. Ooi, “A review on practical considerations and solutions in underwater wireless optical communication,” J. Lightwave Technol. 38(2), 421–431 (2020). [CrossRef]  

2. S. Zhao, W. Zhang, L. Wang, W. Li, L. Gong, W. Cheng, and J. Gruska, “Propagation and self-healing properties of Bessel-Gaussian beam carrying orbital angular momentum in an underwater environment,” Sci. Rep. 9(1), 1–8 (2019). [CrossRef]  

3. Y. Huang, B. Zhang, Z. Gao, G. Zhao, and Z. Duan, “Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence,” Opt. Express 22(15), 17723–17734 (2014). [CrossRef]  

4. F. Ye, J. Zhang, J. Xie, and D. Deng, “Propagation properties of the rotating elliptical chirped Gaussian vortex beam in the oceanic turbulence,” Opt. Commun. 426, 456–462 (2018). [CrossRef]  

5. D. Liu, G. Wang, H. Yin, H. Zhong, and Y. Wang, “Propagation properties of a partially coherent anomalous hollow vortex beam in underwater oceanic turbulence,” Opt. Commun. 437, 346–354 (2019). [CrossRef]  

6. D. Liu, H. Yin, G. Wang, and Y. Wang, “Propagation of partially coherent Lorentz–Gauss vortex beam through oceanic turbulence,” Appl. Opt. 56(31), 8785–8792 (2017). [CrossRef]  

7. S. Deng, D. Yang, Y. Zheng, L. Hu, and Y. Zhang, “Transmittance of finite-energy frozen beams in oceanic turbulence,” Results Phys. 15, 102802 (2019). [CrossRef]  

8. Y. Li, Y. Han, Z. Cui, and Y. Hui, “Performance analysis of the OAM based optical wireless communication systems with partially coherent elegant Laguerre–Gaussian beams in oceanic turbulence,” J. Opt. 21(3), 035702 (2019). [CrossRef]  

9. C. Sun, X. Lv, B. Ma, J. Zhang, D. Deng, and W. Hong, “Statistical properties of partially coherent radially and azimuthally polarized rotating elliptical Gaussian beams in oceanic turbulence with anisotropy,” Opt. Express 27(8), A245–A256 (2019). [CrossRef]  

10. M. Cheng, L. Guo, J. Li, Q. Huang, Q. Cheng, and D. Zhang, “Propagation of an optical vortex carried by a partially coherent Laguerre–Gaussian beam in turbulent ocean,” Appl. Opt. 55(17), 4642–4648 (2016). [CrossRef]  

11. Y. Li, L. Yu, and Y. Zhang, “Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean,” Opt. Express 25(11), 12203–12215 (2017). [CrossRef]  

12. S. Deng, Y. Zhu, and Y. Zhang, “Received probability of vortex modes carried by localized wave of Bessel-Gaussian amplitude envelope in turbulent seawater,” JMSE 7(7), 203 (2019). [CrossRef]  

13. W. Zhang, L. Wang, W. Wang, and S. Zhao, “Propagation property of Laguerre-Gaussian beams carrying fractional orbital angular momentum in an underwater channel,” OSA Continuum 2(11), 3281–3287 (2019). [CrossRef]  

14. X. Yi, R. Zheng, P. Yue, W. Ding, and C. Shen, “Propagation properties of OAM modes carried by partially coherent lg beams in turbulent ocean based on an oceanic power-law spectrum,” Opt. Commun. 443, 238–244 (2019). [CrossRef]  

15. L. Yu and Y. Zhang, “Analysis of modal crosstalk for communication in turbulent ocean using Lommel-Gaussian beam,” Opt. Express 25(19), 22565–22574 (2017). [CrossRef]  

16. Q. Liang, Y. Zhu, and Y. Zhang, “Approximations wander model for the Lommel Gaussian-Schell beam through unstable stratification and weak ocean-turbulence,” Results Phys. 14, 102511 (2019). [CrossRef]  

17. Y. Li, Z. Cui, Y. Han, and Y. Hui, “Channel capacity of orbital-angular-momentum based wireless communication systems with partially coherent elegant Laguerre–Gaussian beams in oceanic turbulence,” J. Opt. Soc. Am. A 36(4), 471–477 (2019). [CrossRef]  

18. D. Yang, Y. Zhang, and H. Shi, “Capacity of turbulent ocean links with carrier Bessel–Gaussian localized vortex waves,” Appl. Opt. 58(34), 9484–9490 (2019). [CrossRef]  

19. M. Zamboni-Rached, L. A. Ambrósio, and H. E. Hernández-Figueroa, “Diffraction–attenuation resistant beams: their higher order versions and finite-aperture generations,” Appl. Opt. 49(30), 5861 (2010). [CrossRef]  

20. M. Zamboni-Rached and M. Mojahedi, “Shaping finite-energy diffraction- and attenuation-resistant beams through Bessel-Gauss-beam superposition,” Phys. Rev. A 92(4), 043839 (2015). [CrossRef]  

21. M. Zamboni-Rached, “Diffraction-Attenuation resistant beams in absorbing media,” Opt. Express 14(5), 1804–1809 (2006). [CrossRef]  

22. T. A. Vieira, M. R. R. Gesualdi, and M. Zamboni-Rached, “Frozen waves: experimental generation,” Opt. Lett. 37(11), 2034–2036 (2012). [CrossRef]  

23. T. A. Vieira, M. Zamboni-Rached, and M. R. R. Gesualdi, “Modeling the spatial shape of nondiffracting beams: Experimental generation of Frozen Waves via holographic method,” Opt. Commun. 315, 374–380 (2014). [CrossRef]  

24. A. H. Dorrah, M. Zamboni-Rached, and M. Mojahedi, “Generating attenuation-resistant frozen waves in absorbing fluid,” Opt. Lett. 41(16), 3702–3705 (2016). [CrossRef]  

25. A. H. Dorrah, M. Zamboni-Rached, T. A Vieira, M. R. R. Gesualdi, and M. Mojahedi, “Experimental demonstration of attenuation resistant frozen waves,” Laser Sources And Applications III 9893, 989311 (2016). [CrossRef]  

26. M. P. Fewell and A. V. Trojan, “Absorption of light by water in the region of high transparency: recommended values for photon-transport calculations,” Appl. Opt. 58(9), 2408–2421 (2019). [CrossRef]  

27. A. J. Radosevich, J. Yi, J. D. Rogers, and V. Backman, “Structural length-scale sensitivities of reflectance measurements in continuous random media under the born approximation,” Opt. Lett. 37(24), 5220–5222 (2012). [CrossRef]  

28. O. Korotkova, Random Light Beams Theory and Applications, (CRC Press, Boca Raton, 2014).

29. Y. Zhang, L. Shan, Y. Li, and L. Yu, “Effects of moderate to strong turbulence on the Hankel-Bessel-Gaussian pulse beam with orbital angular momentum in the marine atmosphere,” Opt. Express 25(26), 33469–33479 (2017). [CrossRef]  

30. Y. Li, Y. Zhang, and Y. Zhu, “Oceanic spectrum of unstable stratification turbulence with outer scale and scintillation index of Gaussian-beam wave,” Opt. Express 27(5), 7656–7672 (2019). [CrossRef]  

31. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, (Mathematics of Computation: 2007).

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Transmittance ${T_I}$ of a random frozen photons beam transmitting in a turbulent ocean versus the propagation z and radial coordinate r for the different superimposing numbers M.
Fig. 2.
Fig. 2. Transmittance ${T_I}$ of a random frozen photons beam transmitting in a turbulent ocean versus the propagation z and radial coordinate r for the different beam waists ${w_0}$ in (a), (b), (c), (d) and for different OAM quantum numbers ${l_0}$ in (c), (e), (f).
Fig. 3.
Fig. 3. Transmittance ${T_I}$ of a random frozen photons beam in a turbulent ocean versus the propagation distance z and radial coordinate r for different equivalent “temperature structure” constants in (a), (b), (c) and versus the dissipation rate of the mean-squared temperature ${\chi _T}$ and the rate of dissipation of kinetic energy per unit mass of fluid $\varepsilon$ at $z\textrm{ = 30}$ and 330 m in (d).
Fig. 4.
Fig. 4. Light transmittance ${T_I}$ of a random frozen photons beam transmitting in a turbulent ocean versus the propagation z and radial coordinate r for the different ratio of temperature and salinity $\varpi $ .
Fig. 5.
Fig. 5. Light transmittance ${T_I}$ of a random frozen photons beam transmitting in a turbulent ocean versus the propagation z and radial coordinate r for the different inner scales ${\eta _0}$ and outer scales ${\eta _c}$ of turbulence.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

u l 0 ( r , θ , z ) = E 0 B l 0 1 + i z / z z R z R exp [ i k ( r 2 2 R z  +  z 2 R z ) r 2 w z 2  + i l 0 θ ] × m = M M A m J l 0 ( α m r 1 + i z / z z R z R ) exp [ i β m ( z R z 1 ) z α m 2 k 2 w z 2 z 2 ]
α m = | 2 k | 1 β m R / β m R k R k R
u l 0 ( r , θ , z ) = E 0 B l 0 1 + i z / z z R z R exp [ i k ( r 2 2 R z  +  z 2 R z ) r 2 w z 2  + i Ψ ( r , θ , z )  + i l 0 θ ] × m = M M A ~ m J l 0 ( α m 1 + i z / z z R z R r ) exp [ ( n ¯ I n ¯ R i ) ( z R z 1 ) ( Q + 2 π m L ) z α m 2 z 2 k 2 w z 2 ]
| u l 0 ( r = r 0 , θ , z ) | 2 | F ( z ) | 2 ,
u l 0 ( r , θ , z ) E 0 B l 0 1 + i z / z z R z R exp [ i k ( r 2 2 R z  +  z 2 R z ) r 2 w 0 2 ( 1 z 2 z R 2 )  + i Ψ ( r , θ , z ) + i Q z + i l 0 θ ] × m = M M A ~ m J l 0 ( α m 1 + i z / z z R z R r ) exp [ ( Q + 2 π m L ) n ¯ I n ¯ R z α m 2 z 2 k 2 w 0 2 ] exp ( i 2 π m L z ) .
| F ( z ) | 2 E 0 2 w 0 2 ( k R 2 + k I 2 ) w 0 2 ( k R 2 + k I 2 ) + 4 z ( k R + z / w 0 2 ) exp [ i Ψ ( r 0 , θ , z ) i Ψ ( r 0 , θ , z ) ] × n = N N m = M M A ~ n A ~ m exp { 8 k I ( k R 2 k I 2 ) z w 0 4 ( k R 2 + k I 2 ) 2 ( z 2 + r 0 2 2 ) 2 r 0 2 w 0 2 [ 1 4 z 2 ( k R 2 k I 2 ) w 0 4 ( k R 2 + k I 2 ) 2 ] } × exp [ ( α m 2 + α n 2 ) ( k R 2 k I 2 ) + i 2 k R k I ( α n 2 α m 2 ) w 0 2 ( k R 2 + k I 2 ) 2 z 2 ] × exp [ i2 π ( m n ) z / L 2 ( Q + ( m n ) π / L ) n ¯ I z / n ¯ R ]
{ 8 k I ( k R 2 k I 2 ) z w 0 4 ( k R 2 + k I 2 ) 2 ( z 2 + r 0 2 2 ) 2 k I z ( z 2 | z R | 2 ) 0 4 z w 0 2 ( k R 2 + k I 2 ) ( k R + z w 0 2 ) 2 z | z R | + z 2 | z R | 2 0
| F ( z ) | 2 E 0 2 exp { 2 r 0 2 w 0 2 [ 1 4 z 2 ( k R 2 k I 2 ) w 0 4 ( k R 2 + k I 2 ) 2 ] } exp [ i Ψ ( r 0 , θ , z ) i Ψ ( r 0 , θ , z ) ] × n = N N m = M M A ~ n A ~ m exp [ ( α m 2 + α n 2 ) ( k R 2 k I 2 ) + i 2 k R k I ( α n 2 α m 2 ) w 0 2 ( k R 2 + k I 2 ) 2 z 2 ] × exp [ i2 π ( m n ) z / L 2 ( Q + ( m + n ) π / L ) z n ¯ I / n ¯ R ]
exp [ i Ψ ( r 0 , θ , z ) i Ψ ( r 0 , θ , z ) ] = exp ( r 0 2 / ρ oc 2 )
ρ o c  =  [ π 2 k 2 z 0 κ 3 Φ n ( κ ) d κ ] 1 / 2
Φ n ( κ ) = 1.69 C m 2 γ [ 1 + C 1 ( κ η ) 2 / 3 ] π ϖ 2 ( κ 2 + κ 0 2 ) 11 / 6 [ ϖ 2 exp ( κ 2 η 2 / R T 2 ) + d r 1 exp ( κ 2 η 2 / R S 2 ) ( 1 + d r 1 ) ϖ exp ( κ 2 η 2 / R T S 2 ) ] , 0 < κ < ,
d r = | ϖ | R F { 1 / ( 1 ( 1 1 / | ϖ | ) ) | ϖ | 1 1.85 | ϖ | 0.85 0.5 | ϖ | 1 , 0.15 | ϖ | | ϖ | 0.5
q
U ( μ + 1 2 ; μ 1 3 ; κ 0 2 κ H 2 ) = 1 κ 0 2 μ 8 / 3 Γ ( μ + 1 / 2 ) 0 κ 2 μ exp ( κ 2 / κ H 2 ) ( κ 0 2 + κ 2 ) 11 / 6 d κ ,
ρ o c = ( 169 ω 2 200 c 2 ( n ¯ r 2 + n ¯ i 2 ) π z γ C m 2 { κ 0 1 / 3 [ U ( 2 ; 7 6 ; κ 0 2 η 2 R T 2 ) + 1 d r ϖ 2 U ( 2 ; 7 6 ; κ 0 2 η 2 R S 2 ) 1 + d r ϖ d r U ( 2 ; 7 6 ; κ 0 2 η 2 R T S 2 ) ] + C 1 η 2 / 3 κ 0 Γ ( 7 3 ) [ U ( 7 3 ; 3 2 ; κ 0 2 η 2 R T 2 ) + 1 d r ϖ 2 U ( 7 3 ; 3 2 ; κ 0 2 η 2 R S 2 ) 1 + d r ϖ d r U ( 7 3 ; 3 2 ; κ 0 2 η 2 R T S 2 ) ] } ) 1 2 .
| F ( z ) | 2 E 0 2 exp { 2 r 0 2 w 0 2 [ 1 4 z 2 ( k R 2 k I 2 ) w 0 4 ( k R 2 + k I 2 ) 2 r 0 2 ρ o c 2 ] } n = N N m = M M A ~ n A ~ m exp [ i 2 π L ( m n ) z ] × exp [ 2 ( Q + m + n L π ) n ¯ I n ¯ R z ( α m 2 + α n 2 ) ( k R 2 k I 2 ) + i 2 k r k i ( α n 2 α m 2 ) w 0 2 ( k R 2 + k I 2 ) 2 z 2 ]
β m R β ¯ R  =  m = M M β m R 2 M + 1 = Q ,
β m I Q n ¯ I / n ¯ R = β 0 I , α m | 2 k | 1 β 0 I / k R = α 0 .
n = N N m = M M A ~ m A ~ n [ i 2 π L ( m n ) z ] | F ( z ) | 2 E 0 2 exp { 2 r 0 2 w 0 2 [ 1 4 z 2 ( k R 2 k I 2 ) w 0 4 ( k R 2 + k I 2 ) 2 ] + r 0 2 ρ o c 2 + 2 Q n ¯ I n ¯ R z + 2 α 0 2 ( k R 2 k I 2 ) w 0 2 ( k R 2 + k I 2 ) 2 z 2 }
A ~ m A ~ n = 1 L E 0 2 0 L | F ( z ) | 2 exp { [ 2 ( k R 2 k I 2 ) w 0 2 ( k R 2 + k I 2 ) 2 ( α 0 2 4 r 0 2 w 0 4 ) ] z 2 + 2 Q n ¯ I n ¯ R z + r 0 2 / ρ o c 2 i2 π ( m n ) z / L + 2 r 0 2 / w 0 2 } d z
A ~ m A ~ n = 1 L E 0 2 0 L | F ( z ) | 2 p = 0 [ 2 ( k R 2 k I 2 ) w 0 2 ( k R 2 + k I 2 ) 2 ( α 0 2 4 r 0 2 w 0 4 ) ] p ( z ) 2 p p ! × exp { [ 2 Q n ¯ I n ¯ R + r 0 2 ρ 0 2 i 2 π ( m n ) L ] z + 2 r 0 2 w 0 2 } d z
I ( r , θ , z ) = E 0 2 B l 0 2 1 + ( z / z z R z R ) 2 exp [ r 2 ρ o c 2 2 r 2 w z 2 ] n = N N m = M M A ~ n A ~ m J l 0 ( α m r 1 + i z / z z R z R ) J l 0 ( α n r 1 i z / z z R z R ) × exp { [ i 2 π L ( m n ) ( z R z 1 ) z + 2 n ¯ I n ¯ R ( Q + m + n L π ) ] ( z R z 1 ) z α m 2 + α n 2 k 2 w z 2 z 2 }
x h exp ( a x b ) d x = exp ( a x b ) b [ ( γ 1 ) ! q = 0 γ 1 ( 1 ) ( q + 1 γ ) x b q q ! a γ q ] , ( a 0 , γ = h + 1 b = 1 , 2 , ) ,
A ~ m A ~ n = F 0 L E 0 2 p = 0 [ 2 ( k R 2 k I 2 ) w 0 2 ( k R 2 + k I 2 ) 2 ( α 0 2 4 r 0 2 w 0 4 ) ] p ( 2 p ) ! p ! × exp { [ 2 Q n ¯ I n ¯ R + r 0 2 ρ 0 2 i 2 π ( m n ) L ] L } q = 0 2 p ( 1 ) ( q 2 p ) L q q ! a 2 p + 1 q
I ( r , θ , z ) = F 0 B l 0 2 L [ 1 + ( z / z z R z R ) 2 ] exp [ r 2 ρ o c 2 2 r 2 w z 2 ] × n = N N m = M M J l 0 ( α m r 1 + i z / z z R z R ) J l 0 ( α n r 1 i z / z z R z R ) p = 0 [ 2 ( k R 2 k I 2 ) w 0 2 ( k R 2 + k I 2 ) 2 ( α 0 2 4 r 0 2 w 0 4 ) ] p ( 2 p ) ! p ! × exp [ ( 2 Q n ¯ I n ¯ R + r 0 2 ρ 0 2 i 2 π ( m n ) L ) L ] q = 0 2 p ( 1 ) ( q 2 p ) L q q ! a 2 p + 1 q × exp { [ i 2 π L ( m n ) ( z R z 1 ) z + 2 n ¯ I n ¯ R ( Q + m + n L π ) ] ( z R z 1 ) z α m 2 + α n 2 k 2 w z 2 z 2 }
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.