Abstract

In this paper, a time- and cost-effective method of fabricating a light management structure on the surface of planar silicon (Si) substrates is developed utilizing localized surface plasmon resonance (LSPR) of silver (Ag) nanoparticles (NPs). The Ag NPs are produced by an electroless plating method and then modified in hot water. The resulting randomly distributed Ag NPs can reduce the reflection of the Si surface in the entire visible spectrum. With the help of a MATLAB-based analytical model on Mie theory, the size distribution of Ag NPs for desired optical properties is determined, and the reflection of the best performance sample decreases by up to 24.8% at a wavelength of 371 nm. An atmospheric degradation study of the Ag NPs is also reported, which demonstrates that the LSPR response of unprotected Ag NPs is markedly impaired after 14 days, while the LSPR response of aluminum oxide (Al2O3) protected Ag NPs is unchanged even after 90 days. The Al2O3 coated sample also shows a strong reflection reduction, exhibiting a reflection of as low as 7.6% at a wavelength of 662 nm and a weighted average spectral reflectance (Rave) of 12.2%.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Alloy nanoparticle plasmon resonance for enhancing broadband antireflection of laser-textured silicon surfaces

Lanying Yang, Xiong Li, Xianguo Tuo, Thanh Thi Van Nguyen, Xiangang Luo, and Minghui Hong
Opt. Express 19(S4) A657-A663 (2011)

Selective electroless silver plating of three dimensional SU-8 microstructures on silicon for metamaterials applications

Yuanjun Yan, M. Ibnur Rashad, Ee Jin Teo, Hendrix Tanoto, Jinghua Teng, and Andrew A. Bettiol
Opt. Mater. Express 1(8) 1548-1554 (2011)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and Characterization of Au Colloid Monolayers,” Anal. Chem. 67(4), 735–743 (1995).
    [Crossref]
  2. K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
    [Crossref]
  3. G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Berlin, Ger.) 330(3), 377–445 (1908).
    [Crossref]
  4. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref]
  5. B. J. Soller and D. G. Hall, “Energy transfer at optical frequencies to silicon-based waveguiding structures,” J. Opt. Soc. Am. A 18(10), 2577–2584 (2001).
    [Crossref]
  6. S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5(3), 515–518 (2005).
    [Crossref]
  7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  8. J. Lerme, C. Bonnet, M. A. Lebeault, M. Pellarin, and E. Cottancin, “Surface Plasmon Resonance Damping in Spheroidal Metal Particles: Quantum Confinement, Shape, and Polarization Dependences,” J. Phys. Chem. C 121(10), 5693–5708 (2017).
    [Crossref]
  9. P. Johns, G. Beane, K. Yu, and G. V. Hartland, “Dynamics of Surface Plasmon Polaritons in Metal Nanowires,” J. Phys. Chem. C 121(10), 5445–5459 (2017).
    [Crossref]
  10. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [Crossref]
  11. C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
    [Crossref]
  12. T. Huang, F. Meng, and L. M. Qi, “Controlled Synthesis of Dendritic Gold Nanostructures Assisted by Supramolecular Complexes of Surfactant with Cyclodextrin,” Langmuir 26(10), 7582–7589 (2010).
    [Crossref]
  13. K. N. Heck, B. G. Janesko, G. E. Scuseria, N. J. Halas, and M. S. Wong, “Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells,” J. Am. Chem. Soc. 130(49), 16592–16600 (2008).
    [Crossref]
  14. L. B. Kong, C. Lee, C. M. Earhart, B. Cordovez, and J. W. Chan, “A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles,” Opt. Express 23(5), 6793–6802 (2015).
    [Crossref]
  15. A. Roy, A. Maiti, T. K. Chini, and B. Satpati, “Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering,” ACS Appl. Mater. Interfaces 9(39), 34405–34415 (2017).
    [Crossref]
  16. M. L. Ren, X. W. Meng, D. Chen, F. Q. Tang, and J. Jiao, “Using silver nanoparticle to enhance current response of biosensor,” Biosens. Bioelectron. 21(3), 433–437 (2005).
    [Crossref]
  17. P. V. Baptista, G. Doria, and J. Conde, “Alloy metal nanoparticles for multicolor cancer diagnostics,” Proc. SPIE 7909, 79090K (2011).
    [Crossref]
  18. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
    [Crossref]
  19. G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
    [Crossref]
  20. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref]
  21. S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
    [Crossref]
  22. J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett. 34(4), 443–445 (2009).
    [Crossref]
  23. S. Kutrovskaya, A. Kucherik, A. Osipov, V. Samyshkin, A. Istratov, and A. V. Kavokin, “Nanocomposite Metamaterials Based on Self-assembled Titanium Dioxide Rolls with Embedded Gold Nanoparticles,” Sci. Rep. 9(1), 7023 (2019).
    [Crossref]
  24. R. Sangno, S. Maity, and R. K. Mehta, “Plasmonic Effect due to silver nanoparticles on Silicon solar cell,” Procedia Comput Sci. 92, 549–553 (2016).
    [Crossref]
  25. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
    [Crossref]
  26. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [Crossref]
  27. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref]
  28. S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the Plasmonic Photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
    [Crossref]
  29. A. Vincenzo, P. Roberto, F. Marco, M. M. Onofrio, and I. Maria Antonia, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys.: Condens. Matter 29(20), 203002 (2017).
    [Crossref]
  30. H. Im, N. C. Lindquist, A. Lesuffleur, and S. H. Oh, “Atomic Layer Deposition of Dielectric Overlayers for Enhancing the Optical Properties and Chemical Stability of Plasmonic Nanoholes,” ACS Nano 4(2), 947–954 (2010).
    [Crossref]
  31. P. Pinkhasova, H. Chen, M. W. G. M. Verhoeven, S. Sukhishvili, and H. Du, “Thermally annealed Ag nanoparticles on anodized aluminium oxide for SERS sensing,” RSC Adv. 3(39), 17954–17961 (2013).
    [Crossref]
  32. H. Águas, R. J. C. Silva, M. Viegas, L. Pereira, E. Fortunato, and R. Martins, “Study of environmental degradation of silver surface,” Phys. Status Solidi C 5(5), 1215–1218 (2008).
    [Crossref]
  33. M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
    [Crossref]
  34. J. Y. He, C. Y. Huang, N. Dai, and D. M. Zhu, “Study of Surface plasmon resonance of Au nanoparticles coated with dielectric layers,” International Symposium on Photoelectronic Detection and Imaging 2011: Sensor and Micromachined Optical Device Technologies8191(2011).
  35. H. Singh, M. Mathew, A. Kottantharayil, and C. Solanki, “Plasmonic effect of silver nanoparticles sandwiched in silicon nitride and oxide structures for solar cell application,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, 2012), 24–28.
  36. I. Piwonski, K. Spilarewicz-Stanek, A. Kisielewska, K. Kadziola, M. Cichomski, and J. Ginter, “Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings,” Appl. Surf. Sci. 373, 38–44 (2016).
    [Crossref]
  37. R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. R. Soc., A 368(1915), 1333–1383 (2010).
    [Crossref]
  38. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
    [Crossref]
  39. P. C. Lee and D. Meisel, “Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
    [Crossref]
  40. F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
    [Crossref]
  41. F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
    [Crossref]
  42. S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25(17), 175601 (2014).
    [Crossref]
  43. C. Matzler, “MATLAB functions for Mie scattering and absorption,” IAP Res Rep.8 (2002).
  44. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), pp. xiv.
  45. Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
    [Crossref]
  46. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovoltaics 15(5), 415–423 (2007).
    [Crossref]
  47. D. Nečas and P. Klapetek, “Gwyddion: an open-source software for SPM data analysis,” in Open Physics (Springer, 2012), p. 181.
  48. N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nano Energy 1(6), 777–782 (2012).
    [Crossref]
  49. S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanopart. Res. 6(4), 411–414 (2004).
    [Crossref]
  50. S. Kundu, K. Wang, and H. Liang, “Size-Controlled Synthesis and Self-Assembly of Silver Nanoparticles within a Minute Using Microwave Irradiation,” J. Phys. Chem. C 113(1), 134–141 (2009).
    [Crossref]
  51. J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
    [Crossref]
  52. M. C. Gunendi, I. Tanyeli, G. B. Akguc, A. Bek, R. Turan, and O. Gulseren, “Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications,” Opt. Express 21(15), 18344–18353 (2013).
    [Crossref]

2019 (1)

S. Kutrovskaya, A. Kucherik, A. Osipov, V. Samyshkin, A. Istratov, and A. V. Kavokin, “Nanocomposite Metamaterials Based on Self-assembled Titanium Dioxide Rolls with Embedded Gold Nanoparticles,” Sci. Rep. 9(1), 7023 (2019).
[Crossref]

2018 (1)

M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
[Crossref]

2017 (4)

A. Vincenzo, P. Roberto, F. Marco, M. M. Onofrio, and I. Maria Antonia, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys.: Condens. Matter 29(20), 203002 (2017).
[Crossref]

J. Lerme, C. Bonnet, M. A. Lebeault, M. Pellarin, and E. Cottancin, “Surface Plasmon Resonance Damping in Spheroidal Metal Particles: Quantum Confinement, Shape, and Polarization Dependences,” J. Phys. Chem. C 121(10), 5693–5708 (2017).
[Crossref]

P. Johns, G. Beane, K. Yu, and G. V. Hartland, “Dynamics of Surface Plasmon Polaritons in Metal Nanowires,” J. Phys. Chem. C 121(10), 5445–5459 (2017).
[Crossref]

A. Roy, A. Maiti, T. K. Chini, and B. Satpati, “Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering,” ACS Appl. Mater. Interfaces 9(39), 34405–34415 (2017).
[Crossref]

2016 (5)

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

R. Sangno, S. Maity, and R. K. Mehta, “Plasmonic Effect due to silver nanoparticles on Silicon solar cell,” Procedia Comput Sci. 92, 549–553 (2016).
[Crossref]

I. Piwonski, K. Spilarewicz-Stanek, A. Kisielewska, K. Kadziola, M. Cichomski, and J. Ginter, “Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings,” Appl. Surf. Sci. 373, 38–44 (2016).
[Crossref]

F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
[Crossref]

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

2015 (1)

2014 (3)

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the Plasmonic Photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref]

S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25(17), 175601 (2014).
[Crossref]

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

2013 (2)

M. C. Gunendi, I. Tanyeli, G. B. Akguc, A. Bek, R. Turan, and O. Gulseren, “Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications,” Opt. Express 21(15), 18344–18353 (2013).
[Crossref]

P. Pinkhasova, H. Chen, M. W. G. M. Verhoeven, S. Sukhishvili, and H. Du, “Thermally annealed Ag nanoparticles on anodized aluminium oxide for SERS sensing,” RSC Adv. 3(39), 17954–17961 (2013).
[Crossref]

2012 (2)

G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
[Crossref]

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nano Energy 1(6), 777–782 (2012).
[Crossref]

2011 (1)

P. V. Baptista, G. Doria, and J. Conde, “Alloy metal nanoparticles for multicolor cancer diagnostics,” Proc. SPIE 7909, 79090K (2011).
[Crossref]

2010 (5)

H. Im, N. C. Lindquist, A. Lesuffleur, and S. H. Oh, “Atomic Layer Deposition of Dielectric Overlayers for Enhancing the Optical Properties and Chemical Stability of Plasmonic Nanoholes,” ACS Nano 4(2), 947–954 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

T. Huang, F. Meng, and L. M. Qi, “Controlled Synthesis of Dendritic Gold Nanostructures Assisted by Supramolecular Complexes of Surfactant with Cyclodextrin,” Langmuir 26(10), 7582–7589 (2010).
[Crossref]

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. R. Soc., A 368(1915), 1333–1383 (2010).
[Crossref]

2009 (3)

S. Kundu, K. Wang, and H. Liang, “Size-Controlled Synthesis and Self-Assembly of Silver Nanoparticles within a Minute Using Microwave Irradiation,” J. Phys. Chem. C 113(1), 134–141 (2009).
[Crossref]

J. H. Lee, Q. Wu, and W. Park, “Metal nanocluster metamaterial fabricated by the colloidal self-assembly,” Opt. Lett. 34(4), 443–445 (2009).
[Crossref]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

2008 (6)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref]

H. Águas, R. J. C. Silva, M. Viegas, L. Pereira, E. Fortunato, and R. Martins, “Study of environmental degradation of silver surface,” Phys. Status Solidi C 5(5), 1215–1218 (2008).
[Crossref]

K. N. Heck, B. G. Janesko, G. E. Scuseria, N. J. Halas, and M. S. Wong, “Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells,” J. Am. Chem. Soc. 130(49), 16592–16600 (2008).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref]

2007 (2)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovoltaics 15(5), 415–423 (2007).
[Crossref]

2005 (3)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5(3), 515–518 (2005).
[Crossref]

M. L. Ren, X. W. Meng, D. Chen, F. Q. Tang, and J. Jiao, “Using silver nanoparticle to enhance current response of biosensor,” Biosens. Bioelectron. 21(3), 433–437 (2005).
[Crossref]

2004 (1)

S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanopart. Res. 6(4), 411–414 (2004).
[Crossref]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2002 (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

2001 (1)

2000 (1)

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[Crossref]

1995 (1)

K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and Characterization of Au Colloid Monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[Crossref]

1982 (1)

P. C. Lee and D. Meisel, “Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

1908 (1)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Berlin, Ger.) 330(3), 377–445 (1908).
[Crossref]

Águas, H.

H. Águas, R. J. C. Silva, M. Viegas, L. Pereira, E. Fortunato, and R. Martins, “Study of environmental degradation of silver surface,” Phys. Status Solidi C 5(5), 1215–1218 (2008).
[Crossref]

Ahmad, N.

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nano Energy 1(6), 777–782 (2012).
[Crossref]

Akguc, G. B.

Almeida, C.

G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
[Crossref]

Alu, A.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref]

Arafune, K.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovoltaics 15(5), 415–423 (2007).
[Crossref]

Assuncao, M.

G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Bagnall, D. M.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

Bao, J. M.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Bao, K.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Baptista, P. V.

G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
[Crossref]

P. V. Baptista, G. Doria, and J. Conde, “Alloy metal nanoparticles for multicolor cancer diagnostics,” Proc. SPIE 7909, 79090K (2011).
[Crossref]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

Bardhan, R.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Beane, G.

P. Johns, G. Beane, K. Yu, and G. V. Hartland, “Dynamics of Surface Plasmon Polaritons in Metal Nanowires,” J. Phys. Chem. C 121(10), 5445–5459 (2017).
[Crossref]

Bek, A.

Berciaud, S.

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5(3), 515–518 (2005).
[Crossref]

Black, M. R.

F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
[Crossref]

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), pp. xiv.

Bonnet, C.

J. Lerme, C. Bonnet, M. A. Lebeault, M. Pellarin, and E. Cottancin, “Surface Plasmon Resonance Damping in Spheroidal Metal Particles: Quantum Confinement, Shape, and Polarization Dependences,” J. Phys. Chem. C 121(10), 5693–5708 (2017).
[Crossref]

Brown, K. R.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[Crossref]

Capasso, F.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Chan, J. W.

Chen, D.

M. L. Ren, X. W. Meng, D. Chen, F. Q. Tang, and J. Jiao, “Using silver nanoparticle to enhance current response of biosensor,” Biosens. Bioelectron. 21(3), 433–437 (2005).
[Crossref]

Chen, H.

P. Pinkhasova, H. Chen, M. W. G. M. Verhoeven, S. Sukhishvili, and H. Du, “Thermally annealed Ag nanoparticles on anodized aluminium oxide for SERS sensing,” RSC Adv. 3(39), 17954–17961 (2013).
[Crossref]

Chini, T. K.

A. Roy, A. Maiti, T. K. Chini, and B. Satpati, “Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering,” ACS Appl. Mater. Interfaces 9(39), 34405–34415 (2017).
[Crossref]

Christiansen, S. H.

S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25(17), 175601 (2014).
[Crossref]

Cichomski, M.

I. Piwonski, K. Spilarewicz-Stanek, A. Kisielewska, K. Kadziola, M. Cichomski, and J. Ginter, “Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings,” Appl. Surf. Sci. 373, 38–44 (2016).
[Crossref]

Cloutet, E.

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Cognet, L.

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5(3), 515–518 (2005).
[Crossref]

Conde, J.

G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
[Crossref]

P. V. Baptista, G. Doria, and J. Conde, “Alloy metal nanoparticles for multicolor cancer diagnostics,” Proc. SPIE 7909, 79090K (2011).
[Crossref]

Cordovez, B.

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Cottancin, E.

J. Lerme, C. Bonnet, M. A. Lebeault, M. Pellarin, and E. Cottancin, “Surface Plasmon Resonance Damping in Spheroidal Metal Particles: Quantum Confinement, Shape, and Polarization Dependences,” J. Phys. Chem. C 121(10), 5693–5708 (2017).
[Crossref]

Cryan, M. J.

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nano Energy 1(6), 777–782 (2012).
[Crossref]

Dai, N.

J. Y. He, C. Y. Huang, N. Dai, and D. M. Zhu, “Study of Surface plasmon resonance of Au nanoparticles coated with dielectric layers,” International Symposium on Photoelectronic Detection and Imaging 2011: Sensor and Micromachined Optical Device Technologies8191(2011).

Davidson, L. M.

F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
[Crossref]

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

Doria, G.

G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
[Crossref]

P. V. Baptista, G. Doria, and J. Conde, “Alloy metal nanoparticles for multicolor cancer diagnostics,” Proc. SPIE 7909, 79090K (2011).
[Crossref]

Du, D. X.

M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
[Crossref]

Du, H.

P. Pinkhasova, H. Chen, M. W. G. M. Verhoeven, S. Sukhishvili, and H. Du, “Thermally annealed Ag nanoparticles on anodized aluminium oxide for SERS sensing,” RSC Adv. 3(39), 17954–17961 (2013).
[Crossref]

Duan, W.

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
[Crossref]

Duan, X. Y.

M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
[Crossref]

Duguet, E.

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Earhart, C. M.

Estakhri, N. M.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Fan, J. A.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Fortunato, E.

H. Águas, R. J. C. Silva, M. Viegas, L. Pereira, E. Fortunato, and R. Martins, “Study of environmental degradation of silver surface,” Phys. Status Solidi C 5(5), 1215–1218 (2008).
[Crossref]

Forziati, J.

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
[Crossref]

Fox, N. A.

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nano Energy 1(6), 777–782 (2012).
[Crossref]

Freeman, R. G.

K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and Characterization of Au Colloid Monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[Crossref]

Ghosh, S. K.

S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanopart. Res. 6(4), 411–414 (2004).
[Crossref]

Giestas, L.

G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
[Crossref]

Ginter, J.

I. Piwonski, K. Spilarewicz-Stanek, A. Kisielewska, K. Kadziola, M. Cichomski, and J. Ginter, “Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings,” Appl. Surf. Sci. 373, 38–44 (2016).
[Crossref]

Gómez-Graña, S.

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Grabar, K. C.

K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and Characterization of Au Colloid Monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[Crossref]

Grana, E.

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref]

Gulseren, O.

Gunendi, M. C.

Hadziioannou, G.

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Hagglund, C.

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Halas, N. J.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

K. N. Heck, B. G. Janesko, G. E. Scuseria, N. J. Halas, and M. S. Wong, “Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells,” J. Am. Chem. Soc. 130(49), 16592–16600 (2008).
[Crossref]

Hall, D. G.

Hartland, G. V.

P. Johns, G. Beane, K. Yu, and G. V. Hartland, “Dynamics of Surface Plasmon Polaritons in Metal Nanowires,” J. Phys. Chem. C 121(10), 5445–5459 (2017).
[Crossref]

He, J. Y.

J. Y. He, C. Y. Huang, N. Dai, and D. M. Zhu, “Study of Surface plasmon resonance of Au nanoparticles coated with dielectric layers,” International Symposium on Photoelectronic Detection and Imaging 2011: Sensor and Micromachined Optical Device Technologies8191(2011).

Heck, K. N.

K. N. Heck, B. G. Janesko, G. E. Scuseria, N. J. Halas, and M. S. Wong, “Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells,” J. Am. Chem. Soc. 130(49), 16592–16600 (2008).
[Crossref]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref]

Hommer, M. B.

K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and Characterization of Au Colloid Monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[Crossref]

Huang, C. Y.

J. Y. He, C. Y. Huang, N. Dai, and D. M. Zhu, “Study of Surface plasmon resonance of Au nanoparticles coated with dielectric layers,” International Symposium on Photoelectronic Detection and Imaging 2011: Sensor and Micromachined Optical Device Technologies8191(2011).

Huang, T.

T. Huang, F. Meng, and L. M. Qi, “Controlled Synthesis of Dendritic Gold Nanostructures Assisted by Supramolecular Complexes of Surfactant with Cyclodextrin,” Langmuir 26(10), 7582–7589 (2010).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), pp. xiv.

Im, H.

H. Im, N. C. Lindquist, A. Lesuffleur, and S. H. Oh, “Atomic Layer Deposition of Dielectric Overlayers for Enhancing the Optical Properties and Chemical Stability of Plasmonic Nanoholes,” ACS Nano 4(2), 947–954 (2010).
[Crossref]

Istratov, A.

S. Kutrovskaya, A. Kucherik, A. Osipov, V. Samyshkin, A. Istratov, and A. V. Kavokin, “Nanocomposite Metamaterials Based on Self-assembled Titanium Dioxide Rolls with Embedded Gold Nanoparticles,” Sci. Rep. 9(1), 7023 (2019).
[Crossref]

Janesko, B. G.

K. N. Heck, B. G. Janesko, G. E. Scuseria, N. J. Halas, and M. S. Wong, “Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells,” J. Am. Chem. Soc. 130(49), 16592–16600 (2008).
[Crossref]

Jiao, J.

M. L. Ren, X. W. Meng, D. Chen, F. Q. Tang, and J. Jiao, “Using silver nanoparticle to enhance current response of biosensor,” Biosens. Bioelectron. 21(3), 433–437 (2005).
[Crossref]

Johns, P.

P. Johns, G. Beane, K. Yu, and G. V. Hartland, “Dynamics of Surface Plasmon Polaritons in Metal Nanowires,” J. Phys. Chem. C 121(10), 5445–5459 (2017).
[Crossref]

Jura, M. P.

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
[Crossref]

Kadziola, K.

I. Piwonski, K. Spilarewicz-Stanek, A. Kisielewska, K. Kadziola, M. Cichomski, and J. Ginter, “Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings,” Appl. Surf. Sci. 373, 38–44 (2016).
[Crossref]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovoltaics 15(5), 415–423 (2007).
[Crossref]

Kasemo, B.

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Kavokin, A. V.

S. Kutrovskaya, A. Kucherik, A. Osipov, V. Samyshkin, A. Istratov, and A. V. Kavokin, “Nanocomposite Metamaterials Based on Self-assembled Titanium Dioxide Rolls with Embedded Gold Nanoparticles,” Sci. Rep. 9(1), 7023 (2019).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kim, J.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref]

Kisielewska, A.

I. Piwonski, K. Spilarewicz-Stanek, A. Kisielewska, K. Kadziola, M. Cichomski, and J. Ginter, “Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings,” Appl. Surf. Sci. 373, 38–44 (2016).
[Crossref]

Klapetek, P.

D. Nečas and P. Klapetek, “Gwyddion: an open-source software for SPM data analysis,” in Open Physics (Springer, 2012), p. 181.

Kong, L. B.

Kottantharayil, A.

H. Singh, M. Mathew, A. Kottantharayil, and C. Solanki, “Plasmonic effect of silver nanoparticles sandwiched in silicon nitride and oxide structures for solar cell application,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, 2012), 24–28.

Kucherik, A.

S. Kutrovskaya, A. Kucherik, A. Osipov, V. Samyshkin, A. Istratov, and A. V. Kavokin, “Nanocomposite Metamaterials Based on Self-assembled Titanium Dioxide Rolls with Embedded Gold Nanoparticles,” Sci. Rep. 9(1), 7023 (2019).
[Crossref]

Kumar, D.

S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25(17), 175601 (2014).
[Crossref]

Kundu, S.

S. Kundu, K. Wang, and H. Liang, “Size-Controlled Synthesis and Self-Assembly of Silver Nanoparticles within a Minute Using Microwave Irradiation,” J. Phys. Chem. C 113(1), 134–141 (2009).
[Crossref]

S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanopart. Res. 6(4), 411–414 (2004).
[Crossref]

Kutrovskaya, S.

S. Kutrovskaya, A. Kucherik, A. Osipov, V. Samyshkin, A. Istratov, and A. V. Kavokin, “Nanocomposite Metamaterials Based on Self-assembled Titanium Dioxide Rolls with Embedded Gold Nanoparticles,” Sci. Rep. 9(1), 7023 (2019).
[Crossref]

Le Beulze, A.

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Lebeault, M. A.

J. Lerme, C. Bonnet, M. A. Lebeault, M. Pellarin, and E. Cottancin, “Surface Plasmon Resonance Damping in Spheroidal Metal Particles: Quantum Confinement, Shape, and Polarization Dependences,” J. Phys. Chem. C 121(10), 5693–5708 (2017).
[Crossref]

Lee, C.

Lee, J.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the Plasmonic Photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref]

Lee, J. H.

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Lee, W. R.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the Plasmonic Photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref]

Leng, J.

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Lerme, J.

J. Lerme, C. Bonnet, M. A. Lebeault, M. Pellarin, and E. Cottancin, “Surface Plasmon Resonance Damping in Spheroidal Metal Particles: Quantum Confinement, Shape, and Polarization Dependences,” J. Phys. Chem. C 121(10), 5693–5708 (2017).
[Crossref]

Lesuffleur, A.

H. Im, N. C. Lindquist, A. Lesuffleur, and S. H. Oh, “Atomic Layer Deposition of Dielectric Overlayers for Enhancing the Optical Properties and Chemical Stability of Plasmonic Nanoholes,” ACS Nano 4(2), 947–954 (2010).
[Crossref]

Li, M. J.

M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
[Crossref]

Li, X. Q.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Liang, H.

S. Kundu, K. Wang, and H. Liang, “Size-Controlled Synthesis and Self-Assembly of Silver Nanoparticles within a Minute Using Microwave Irradiation,” J. Phys. Chem. C 113(1), 134–141 (2009).
[Crossref]

Lindquist, N. C.

H. Im, N. C. Lindquist, A. Lesuffleur, and S. H. Oh, “Atomic Layer Deposition of Dielectric Overlayers for Enhancing the Optical Properties and Chemical Stability of Plasmonic Nanoholes,” ACS Nano 4(2), 947–954 (2010).
[Crossref]

Liu, X. X.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Lounis, B.

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5(3), 515–518 (2005).
[Crossref]

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

Maiti, A.

A. Roy, A. Maiti, T. K. Chini, and B. Satpati, “Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering,” ACS Appl. Mater. Interfaces 9(39), 34405–34415 (2017).
[Crossref]

Maity, S.

R. Sangno, S. Maity, and R. K. Mehta, “Plasmonic Effect due to silver nanoparticles on Silicon solar cell,” Procedia Comput Sci. 92, 549–553 (2016).
[Crossref]

Manoharan, V. N.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Marco, F.

A. Vincenzo, P. Roberto, F. Marco, M. M. Onofrio, and I. Maria Antonia, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys.: Condens. Matter 29(20), 203002 (2017).
[Crossref]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref]

Maria Antonia, I.

A. Vincenzo, P. Roberto, F. Marco, M. M. Onofrio, and I. Maria Antonia, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys.: Condens. Matter 29(20), 203002 (2017).
[Crossref]

Martins, R.

H. Águas, R. J. C. Silva, M. Viegas, L. Pereira, E. Fortunato, and R. Martins, “Study of environmental degradation of silver surface,” Phys. Status Solidi C 5(5), 1215–1218 (2008).
[Crossref]

Mathew, M.

H. Singh, M. Mathew, A. Kottantharayil, and C. Solanki, “Plasmonic effect of silver nanoparticles sandwiched in silicon nitride and oxide structures for solar cell application,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, 2012), 24–28.

Matzler, C.

C. Matzler, “MATLAB functions for Mie scattering and absorption,” IAP Res Rep.8 (2002).

Mehta, R. K.

R. Sangno, S. Maity, and R. K. Mehta, “Plasmonic Effect due to silver nanoparticles on Silicon solar cell,” Procedia Comput Sci. 92, 549–553 (2016).
[Crossref]

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Meng, F.

T. Huang, F. Meng, and L. M. Qi, “Controlled Synthesis of Dendritic Gold Nanostructures Assisted by Supramolecular Complexes of Surfactant with Cyclodextrin,” Langmuir 26(10), 7582–7589 (2010).
[Crossref]

Meng, X. W.

M. L. Ren, X. W. Meng, D. Chen, F. Q. Tang, and J. Jiao, “Using silver nanoparticle to enhance current response of biosensor,” Biosens. Bioelectron. 21(3), 433–437 (2005).
[Crossref]

Mie, G.

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Berlin, Ger.) 330(3), 377–445 (1908).
[Crossref]

Miller, J. B.

F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
[Crossref]

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

Mornet, S.

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Moskovits, M.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the Plasmonic Photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref]

Mubeen, S.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the Plasmonic Photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref]

Natan, M. J.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[Crossref]

K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and Characterization of Au Colloid Monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[Crossref]

Nath, S.

S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanopart. Res. 6(4), 411–414 (2004).
[Crossref]

Necas, D.

D. Nečas and P. Klapetek, “Gwyddion: an open-source software for SPM data analysis,” in Open Physics (Springer, 2012), p. 181.

Nichols, L.

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

Nordlander, P.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref]

Oh, S. H.

H. Im, N. C. Lindquist, A. Lesuffleur, and S. H. Oh, “Atomic Layer Deposition of Dielectric Overlayers for Enhancing the Optical Properties and Chemical Stability of Plasmonic Nanoholes,” ACS Nano 4(2), 947–954 (2010).
[Crossref]

Ohshita, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovoltaics 15(5), 415–423 (2007).
[Crossref]

Onofrio, M. M.

A. Vincenzo, P. Roberto, F. Marco, M. M. Onofrio, and I. Maria Antonia, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys.: Condens. Matter 29(20), 203002 (2017).
[Crossref]

Osipov, A.

S. Kutrovskaya, A. Kucherik, A. Osipov, V. Samyshkin, A. Istratov, and A. V. Kavokin, “Nanocomposite Metamaterials Based on Self-assembled Titanium Dioxide Rolls with Embedded Gold Nanoparticles,” Sci. Rep. 9(1), 7023 (2019).
[Crossref]

Pal, T.

S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanopart. Res. 6(4), 411–414 (2004).
[Crossref]

Panigrahi, S.

S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanopart. Res. 6(4), 411–414 (2004).
[Crossref]

Parak, W. J.

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. R. Soc., A 368(1915), 1333–1383 (2010).
[Crossref]

Park, W.

Pellarin, M.

J. Lerme, C. Bonnet, M. A. Lebeault, M. Pellarin, and E. Cottancin, “Surface Plasmon Resonance Damping in Spheroidal Metal Particles: Quantum Confinement, Shape, and Polarization Dependences,” J. Phys. Chem. C 121(10), 5693–5708 (2017).
[Crossref]

Pereira, L.

H. Águas, R. J. C. Silva, M. Viegas, L. Pereira, E. Fortunato, and R. Martins, “Study of environmental degradation of silver surface,” Phys. Status Solidi C 5(5), 1215–1218 (2008).
[Crossref]

Petersson, G.

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Pinkhasova, P.

P. Pinkhasova, H. Chen, M. W. G. M. Verhoeven, S. Sukhishvili, and H. Du, “Thermally annealed Ag nanoparticles on anodized aluminium oxide for SERS sensing,” RSC Adv. 3(39), 17954–17961 (2013).
[Crossref]

Piwonski, I.

I. Piwonski, K. Spilarewicz-Stanek, A. Kisielewska, K. Kadziola, M. Cichomski, and J. Ginter, “Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings,” Appl. Surf. Sci. 373, 38–44 (2016).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref]

Pribil, G. K.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Qi, L. M.

T. Huang, F. Meng, and L. M. Qi, “Controlled Synthesis of Dendritic Gold Nanostructures Assisted by Supramolecular Complexes of Surfactant with Cyclodextrin,” Langmuir 26(10), 7582–7589 (2010).
[Crossref]

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

Ren, M. L.

M. L. Ren, X. W. Meng, D. Chen, F. Q. Tang, and J. Jiao, “Using silver nanoparticle to enhance current response of biosensor,” Biosens. Bioelectron. 21(3), 433–437 (2005).
[Crossref]

Roberto, P.

A. Vincenzo, P. Roberto, F. Marco, M. M. Onofrio, and I. Maria Antonia, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys.: Condens. Matter 29(20), 203002 (2017).
[Crossref]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref]

Rosa, J.

G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
[Crossref]

Roy, A.

A. Roy, A. Maiti, T. K. Chini, and B. Satpati, “Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering,” ACS Appl. Mater. Interfaces 9(39), 34405–34415 (2017).
[Crossref]

Sai, H.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovoltaics 15(5), 415–423 (2007).
[Crossref]

Salmon, J.-B.

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Samyshkin, V.

S. Kutrovskaya, A. Kucherik, A. Osipov, V. Samyshkin, A. Istratov, and A. V. Kavokin, “Nanocomposite Metamaterials Based on Self-assembled Titanium Dioxide Rolls with Embedded Gold Nanoparticles,” Sci. Rep. 9(1), 7023 (2019).
[Crossref]

Sangno, R.

R. Sangno, S. Maity, and R. K. Mehta, “Plasmonic Effect due to silver nanoparticles on Silicon solar cell,” Procedia Comput Sci. 92, 549–553 (2016).
[Crossref]

Satpati, B.

A. Roy, A. Maiti, T. K. Chini, and B. Satpati, “Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering,” ACS Appl. Mater. Interfaces 9(39), 34405–34415 (2017).
[Crossref]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schmitt, S. W.

S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25(17), 175601 (2014).
[Crossref]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

Scuseria, G. E.

K. N. Heck, B. G. Janesko, G. E. Scuseria, N. J. Halas, and M. S. Wong, “Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells,” J. Am. Chem. Soc. 130(49), 16592–16600 (2008).
[Crossref]

Shih, C. K.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Shvets, G.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Silva, R. J. C.

H. Águas, R. J. C. Silva, M. Viegas, L. Pereira, E. Fortunato, and R. Martins, “Study of environmental degradation of silver surface,” Phys. Status Solidi C 5(5), 1215–1218 (2008).
[Crossref]

Singh, H.

H. Singh, M. Mathew, A. Kottantharayil, and C. Solanki, “Plasmonic effect of silver nanoparticles sandwiched in silicon nitride and oxide structures for solar cell application,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, 2012), 24–28.

Singh, N.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the Plasmonic Photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref]

Singh, P. K.

S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25(17), 175601 (2014).
[Crossref]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

Solanki, C.

H. Singh, M. Mathew, A. Kottantharayil, and C. Solanki, “Plasmonic effect of silver nanoparticles sandwiched in silicon nitride and oxide structures for solar cell application,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, 2012), 24–28.

Soller, B. J.

Sood, K. N.

S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25(17), 175601 (2014).
[Crossref]

Sperling, R. A.

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. R. Soc., A 368(1915), 1333–1383 (2010).
[Crossref]

Spilarewicz-Stanek, K.

I. Piwonski, K. Spilarewicz-Stanek, A. Kisielewska, K. Kadziola, M. Cichomski, and J. Ginter, “Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings,” Appl. Surf. Sci. 373, 38–44 (2016).
[Crossref]

Srivastava, S. K.

S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25(17), 175601 (2014).
[Crossref]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref]

Stokes, J.

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nano Energy 1(6), 777–782 (2012).
[Crossref]

Stucky, G. D.

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the Plasmonic Photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref]

Sukhishvili, S.

P. Pinkhasova, H. Chen, M. W. G. M. Verhoeven, S. Sukhishvili, and H. Du, “Thermally annealed Ag nanoparticles on anodized aluminium oxide for SERS sensing,” RSC Adv. 3(39), 17954–17961 (2013).
[Crossref]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref]

Tamarat, P.

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5(3), 515–518 (2005).
[Crossref]

Tang, F. Q.

M. L. Ren, X. W. Meng, D. Chen, F. Q. Tang, and J. Jiao, “Using silver nanoparticle to enhance current response of biosensor,” Biosens. Bioelectron. 21(3), 433–437 (2005).
[Crossref]

Tanyeli, I.

Temple, T. L.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

Teng, M.

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nano Energy 1(6), 777–782 (2012).
[Crossref]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref]

Toor, F.

F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
[Crossref]

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

Treguer-Delapierre, M.

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Turan, R.

Veigas, B.

G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
[Crossref]

Verhoeven, M. W. G. M.

P. Pinkhasova, H. Chen, M. W. G. M. Verhoeven, S. Sukhishvili, and H. Du, “Thermally annealed Ag nanoparticles on anodized aluminium oxide for SERS sensing,” RSC Adv. 3(39), 17954–17961 (2013).
[Crossref]

Viegas, M.

H. Águas, R. J. C. Silva, M. Viegas, L. Pereira, E. Fortunato, and R. Martins, “Study of environmental degradation of silver surface,” Phys. Status Solidi C 5(5), 1215–1218 (2008).
[Crossref]

Vincenzo, A.

A. Vincenzo, P. Roberto, F. Marco, M. M. Onofrio, and I. Maria Antonia, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys.: Condens. Matter 29(20), 203002 (2017).
[Crossref]

Walter, D. G.

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[Crossref]

Wang, F. Y.

M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
[Crossref]

Wang, H. Y.

M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
[Crossref]

Wang, J.

M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
[Crossref]

Wang, K.

S. Kundu, K. Wang, and H. Liang, “Size-Controlled Synthesis and Self-Assembly of Silver Nanoparticles within a Minute Using Microwave Irradiation,” J. Phys. Chem. C 113(1), 134–141 (2009).
[Crossref]

Wong, M. S.

K. N. Heck, B. G. Janesko, G. E. Scuseria, N. J. Halas, and M. S. Wong, “Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells,” J. Am. Chem. Soc. 130(49), 16592–16600 (2008).
[Crossref]

Wu, C. H.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Wu, Q.

Wu, Y. W.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Xu, Z. P.

M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
[Crossref]

Yamaguchi, M.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovoltaics 15(5), 415–423 (2007).
[Crossref]

Yim, J.

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
[Crossref]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Yu, K.

P. Johns, G. Beane, K. Yu, and G. V. Hartland, “Dynamics of Surface Plasmon Polaritons in Metal Nanowires,” J. Phys. Chem. C 121(10), 5445–5459 (2017).
[Crossref]

Zach, M.

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

Zeng, Y. L.

M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
[Crossref]

Zhang, C. D.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Zhang, M.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhao, Y.

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Zhu, D. M.

J. Y. He, C. Y. Huang, N. Dai, and D. M. Zhu, “Study of Surface plasmon resonance of Au nanoparticles coated with dielectric layers,” International Symposium on Photoelectronic Detection and Imaging 2011: Sensor and Micromachined Optical Device Technologies8191(2011).

ACS Appl. Mater. Interfaces (1)

A. Roy, A. Maiti, T. K. Chini, and B. Satpati, “Annealing Induced Morphology of Silver Nanoparticles on Pyramidal Silicon Surface and Their Application to Surface-Enhanced Raman Scattering,” ACS Appl. Mater. Interfaces 9(39), 34405–34415 (2017).
[Crossref]

ACS Nano (2)

S. Mubeen, J. Lee, W. R. Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the Plasmonic Photovoltaic,” ACS Nano 8(6), 6066–6073 (2014).
[Crossref]

H. Im, N. C. Lindquist, A. Lesuffleur, and S. H. Oh, “Atomic Layer Deposition of Dielectric Overlayers for Enhancing the Optical Properties and Chemical Stability of Plasmonic Nanoholes,” ACS Nano 4(2), 947–954 (2010).
[Crossref]

Adv. Mater. (1)

Y. W. Wu, C. D. Zhang, N. M. Estakhri, Y. Zhao, J. Kim, M. Zhang, X. X. Liu, G. K. Pribil, A. Alu, C. K. Shih, and X. Q. Li, “Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver,” Adv. Mater. 26(35), 6106–6110 (2014).
[Crossref]

Aip Adv. (1)

M. J. Li, Z. P. Xu, D. X. Du, X. Y. Duan, F. Y. Wang, J. Wang, Y. L. Zeng, and H. Y. Wang, “Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrathin TiO2 dielectric layer,” Aip Adv. 8(6), 065313 (2018).
[Crossref]

Anal. Chem. (1)

K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and Characterization of Au Colloid Monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[Crossref]

Ann. Phys. (Berlin, Ger.) (1)

G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. (Berlin, Ger.) 330(3), 377–445 (1908).
[Crossref]

Appl. Phys. Lett. (3)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

C. Hagglund, M. Zach, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92(5), 053110 (2008).
[Crossref]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[Crossref]

Appl. Surf. Sci. (1)

I. Piwonski, K. Spilarewicz-Stanek, A. Kisielewska, K. Kadziola, M. Cichomski, and J. Ginter, “Examination of Ostwald ripening in the photocatalytic growth of silver nanoparticles on titanium dioxide coatings,” Appl. Surf. Sci. 373, 38–44 (2016).
[Crossref]

Biosens. Bioelectron. (2)

M. L. Ren, X. W. Meng, D. Chen, F. Q. Tang, and J. Jiao, “Using silver nanoparticle to enhance current response of biosensor,” Biosens. Bioelectron. 21(3), 433–437 (2005).
[Crossref]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[Crossref]

Chem. Mater. (1)

K. R. Brown, D. G. Walter, and M. J. Natan, “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape,” Chem. Mater. 12(2), 306–313 (2000).
[Crossref]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref]

J. Am. Chem. Soc. (1)

K. N. Heck, B. G. Janesko, G. E. Scuseria, N. J. Halas, and M. S. Wong, “Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells,” J. Am. Chem. Soc. 130(49), 16592–16600 (2008).
[Crossref]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116(15), 6755–6759 (2002).
[Crossref]

J. Nanopart. Res. (1)

S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal, “General method of synthesis for metal nanoparticles,” J. Nanopart. Res. 6(4), 411–414 (2004).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

P. C. Lee and D. Meisel, “Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

J. Phys. Chem. C (3)

J. Lerme, C. Bonnet, M. A. Lebeault, M. Pellarin, and E. Cottancin, “Surface Plasmon Resonance Damping in Spheroidal Metal Particles: Quantum Confinement, Shape, and Polarization Dependences,” J. Phys. Chem. C 121(10), 5693–5708 (2017).
[Crossref]

P. Johns, G. Beane, K. Yu, and G. V. Hartland, “Dynamics of Surface Plasmon Polaritons in Metal Nanowires,” J. Phys. Chem. C 121(10), 5445–5459 (2017).
[Crossref]

S. Kundu, K. Wang, and H. Liang, “Size-Controlled Synthesis and Self-Assembly of Silver Nanoparticles within a Minute Using Microwave Irradiation,” J. Phys. Chem. C 113(1), 134–141 (2009).
[Crossref]

J. Phys.: Condens. Matter (1)

A. Vincenzo, P. Roberto, F. Marco, M. M. Onofrio, and I. Maria Antonia, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys.: Condens. Matter 29(20), 203002 (2017).
[Crossref]

Langmuir (1)

T. Huang, F. Meng, and L. M. Qi, “Controlled Synthesis of Dendritic Gold Nanostructures Assisted by Supramolecular Complexes of Surfactant with Cyclodextrin,” Langmuir 26(10), 7582–7589 (2010).
[Crossref]

Mater. Horiz. (1)

S. Gómez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, and J.-B. Salmon, “Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies,” Mater. Horiz. 3(6), 596–601 (2016).
[Crossref]

Nano Energy (1)

N. Ahmad, J. Stokes, N. A. Fox, M. Teng, and M. J. Cryan, “Ultra-thin metal films for enhanced solar absorption,” Nano Energy 1(6), 777–782 (2012).
[Crossref]

Nano Lett. (1)

S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, “Observation of intrinsic size effects in the optical response of individual gold nanoparticles,” Nano Lett. 5(3), 515–518 (2005).
[Crossref]

Nanoscale (1)

F. Toor, J. B. Miller, L. M. Davidson, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Metal assisted catalyzed etched (MACE) black Si: optics and device physics,” Nanoscale 8(34), 15448–15466 (2016).
[Crossref]

Nanotechnology (2)

F. Toor, J. B. Miller, L. M. Davidson, L. Nichols, W. Duan, M. P. Jura, J. Yim, J. Forziati, and M. R. Black, “Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering,” Nanotechnology 27(41), 412003 (2016).
[Crossref]

S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, “Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics,” Nanotechnology 25(17), 175601 (2014).
[Crossref]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Philos. Trans. R. Soc., A (1)

R. A. Sperling and W. J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos. Trans. R. Soc., A 368(1915), 1333–1383 (2010).
[Crossref]

Phys. Status Solidi C (1)

H. Águas, R. J. C. Silva, M. Viegas, L. Pereira, E. Fortunato, and R. Martins, “Study of environmental degradation of silver surface,” Phys. Status Solidi C 5(5), 1215–1218 (2008).
[Crossref]

Proc. SPIE (1)

P. V. Baptista, G. Doria, and J. Conde, “Alloy metal nanoparticles for multicolor cancer diagnostics,” Proc. SPIE 7909, 79090K (2011).
[Crossref]

Procedia Comput Sci. (1)

R. Sangno, S. Maity, and R. K. Mehta, “Plasmonic Effect due to silver nanoparticles on Silicon solar cell,” Procedia Comput Sci. 92, 549–553 (2016).
[Crossref]

Prog. Photovoltaics (1)

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovoltaics 15(5), 415–423 (2007).
[Crossref]

RSC Adv. (1)

P. Pinkhasova, H. Chen, M. W. G. M. Verhoeven, S. Sukhishvili, and H. Du, “Thermally annealed Ag nanoparticles on anodized aluminium oxide for SERS sensing,” RSC Adv. 3(39), 17954–17961 (2013).
[Crossref]

Sci. Rep. (1)

S. Kutrovskaya, A. Kucherik, A. Osipov, V. Samyshkin, A. Istratov, and A. V. Kavokin, “Nanocomposite Metamaterials Based on Self-assembled Titanium Dioxide Rolls with Embedded Gold Nanoparticles,” Sci. Rep. 9(1), 7023 (2019).
[Crossref]

Science (1)

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-Assembled Plasmonic Nanoparticle Clusters,” Science 328(5982), 1135–1138 (2010).
[Crossref]

Sensors (1)

G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, and P. V. Baptista, “Noble Metal Nanoparticles for Biosensing Applications,” Sensors 12(2), 1657–1687 (2012).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

Other (5)

J. Y. He, C. Y. Huang, N. Dai, and D. M. Zhu, “Study of Surface plasmon resonance of Au nanoparticles coated with dielectric layers,” International Symposium on Photoelectronic Detection and Imaging 2011: Sensor and Micromachined Optical Device Technologies8191(2011).

H. Singh, M. Mathew, A. Kottantharayil, and C. Solanki, “Plasmonic effect of silver nanoparticles sandwiched in silicon nitride and oxide structures for solar cell application,” in Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, 2012), 24–28.

C. Matzler, “MATLAB functions for Mie scattering and absorption,” IAP Res Rep.8 (2002).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998), pp. xiv.

D. Nečas and P. Klapetek, “Gwyddion: an open-source software for SPM data analysis,” in Open Physics (Springer, 2012), p. 181.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The calculated Mie extinction (blue) and scattering (red) efficiencies for a spherical Ag NP with a diameter of (a) 20 nm, (b) 60 nm, or (c) 100 nm in a uniform medium with a refractive index of N = 1.0 (solid) or N = 1.6 (dashed).
Fig. 2.
Fig. 2. Surface SEM images of an Ag NP decorated Si substrate (a) before and (b) after a 2 min 90 ˚C water bath. Spectral reflection (c) and (d) ΔR% of bare Si (dashed black line), Si with Ag NPs pre-water bath (solid blue line), and Si with Ag NPs post-water bath (solid red line).
Fig. 3.
Fig. 3. Surface SEM images of Ag NP decorated Si substrates after a 2 min 90 °C water bath. The substrates are dipped in a plating solution of (a) 4.8 M HF and 4 mM AgNO3 for 10 s, (b) 2.4 M HF and 4 mM AgNO3 for 10 s, (c) 4.8 M HF and 1 mM AgNO3 for 10 s, (d) 4.8 M HF and 2 mM AgNO3 for 10 s, (e) 4.8 M HF and 4 mM AgNO3 for 5 s, and (f) 4.8 M HF and 4 mM AgNO3 for 20 s. The samples are labelled in the same order.
Fig. 4.
Fig. 4. The CSFFtot and CSFFi vs diameter data (a) and the ΔR% spectra (b) for samples plated using different recipes: A: 4.8 M HF and 4 mM AgNO3 for 10 s; B: 2.4 M HF and 4 mM AgNO3 for 10 s; C: 4.8 M HF and 1 mM AgNO3 for 10 s; D: 4.8 M HF and 2 mM AgNO3 for 10 s; E: 4.8 M HF and 4 mM AgNO3 for 5 s; F: 4.8 M HF and 4 mM AgNO3 for 20 s. The vertical black dashed line in (b) indicates the wavelength of 371 nm.
Fig. 5.
Fig. 5. The side view cross section SEM image of the surface of sample A.
Fig. 6.
Fig. 6. (a) The ΔR% value of sample A right after water bath (solid blue) and after sitting in the laboratory environment for 1 (dashed red) and 2 (dotted green) weeks. (b) The reflection data of a sample plated using the same recipe as sample A and coated with Al2O3 right after deposition (solid blue) and after sitting in the laboratory ambient for 90 days (dashed red).
Fig. 7.
Fig. 7. (a) AFM image of a medium diameter Ag NPs dominated surface coated with ALD Al2O3 film. (b) Reflection and Rave values of a bare Si surface without Ag NPs (blue dashed), a medium diameter Ag NPs dominated Si surface (red), and a large diameter Ag NPs dominated Si surface (green) before (dashed) and after (solid) the ALD Al2O3 deposition.

Tables (1)

Tables Icon

Table 1. The categorization of different sized Ag NPs studied in this work.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Si ( s )   +     4 A g +     +     6 HF     4 Ag ( s )   +     H 2 Si F 6   +     4 H +  
Δ R % = R S i R A g
π ( D i 2 ) 2 = σ i
C S F F i = D m i n < D i D m a x σ i A t o t = D m i n < D i D m a x π D i 2 4 A t o t
C S F F t o t = 0 < D i σ i A t o t = 0 < D i π D i 2 4 A t o t

Metrics