Abstract

Single crystalline GeSn growth on Si substrate was successfully demonstrated by using plasma enhanced chemical vapor deposition (PE-CVD) with commercially available GeH4 and SnCl4 precursors. Using the plasma enhancement technique, low temperature growth at 350°C for GeSn epitaxy on Si substrate was achieved with the growth rate of 51.4 nm/min and Sn content up to 6%. The relaxed GeSn films with 1 µm thickness were able to be grown despite of the huge lattice mismatch between GeSn and Si. Structural and optical characterizations were conducted to study the film properties. The demonstrated plasma enhancement growth showed its effectiveness to enhance the Sn incorporation of the crystalline GeSn at low temperature and to maintain the high growth rate.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Germanium tin: silicon photonics toward the mid-infrared [Invited]

E. Kasper, M. Kittler, M. Oehme, and T. Arguirov
Photon. Res. 1(2) 69-76 (2013)

Study of material and optical properties of SixGe1-x-ySny alloys for Si-based optoelectronic device applications

Bader Alharthi, Joe Margetis, Huong Tran, Sattar Al-kabi, Wei Dou, Seyed Amir Ghetmiri, Aboozar Mosleh, John Tolle, Wei Du, Mansour Mortazavi, Baohua Li, Hameed Naseem, and Shui-Qing Yu
Opt. Mater. Express 7(10) 3517-3528 (2017)

Intermixing studies in GaN1−xSbx highly mismatched alloys

Wendy L. Sarney, Stefan P. Svensson, Min Ting, Natalie Segercrantz, Wladek Walukiewicz, Kin Man Yu, Robert W. Martin, Sergei V. Novikov, and C. T. Foxon
Appl. Opt. 56(3) B64-B69 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: driving integrated optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
    [Crossref]
  2. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  3. S. Wirths, D. Buca, and S. Mantl, “Si-Ge-Sn alloys: From growth to applications,” Prog. Cryst. Growth Charact. Mater. 62(1), 1–39 (2016).
    [Crossref]
  4. J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17(17), 1649 (2007).
    [Crossref]
  5. S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
    [Crossref]
  6. D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
    [Crossref]
  7. V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
    [Crossref]
  8. N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
    [Crossref]
  9. J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
    [Crossref]
  10. G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menéndez, “Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission,” Appl. Phys. Lett. 101(7), 072105 (2012).
    [Crossref]
  11. S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
    [Crossref]
  12. W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
    [Crossref]
  13. J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
    [Crossref]
  14. J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
    [Crossref]
  15. S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
    [Crossref]
  16. J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
    [Crossref]
  17. W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, S. Al-Kabi, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Optically pumped lasing at 3 µm from compositionally graded GeSn with Sn up to 22.3%,” Submitted to Optica.
  18. W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
    [Crossref] [PubMed]
  19. E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
    [Crossref]
  20. R. A. Rudder, G. G. Fountain, and R. J. Markunas, “Remote plasma‐enhanced chemical‐vapor deposition of epitaxial Ge films,” J. Appl. Phys. 60(10), 3519–3522 (1986).
    [Crossref]
  21. G. Isella, J. Osmond, M. Kummer, R. Kaufmann, and H. von Känel, “Heterojunction photodiodes fabricated from Ge/Si (100) layers grown by low-energy plasma-enhanced CVD,” Semicond. Sci. Technol. 22(1), S26–S28 (2007).
    [Crossref]
  22. G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
    [Crossref]
  23. P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).
  24. B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).
  25. A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
    [Crossref]
  26. H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
    [Crossref]
  27. S. Kasap, Handbook of Electronic and Photonic Materials (Springer, 2006).
  28. M. A., (M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley-Interscience, 2005).
  29. Z. Kiss’ovski, M. Kolev, A. Ivanov, S. Lishev, and I. Koleva, “Small surface wave discharge at atmospheric pressure,” J. Phys. D Appl. Phys. 42(18), 182004 (2009).
    [Crossref]
  30. N. Hata, A. Matsuda, and K. Tanaka, “Spectroscopic diagnostics of plasma‐chemical‐vapor deposition from silane and germane,” J. Appl. Phys. 61(8), 3055–3060 (1987).
    [Crossref]
  31. J. J. Robbins, R. T. Alexander, W. Xiao, T. L. Vincent, and C. A. Wolden, “An investigation of tin oxide plasma-enhanced chemical vapor deposition using optical emission spectroscopy,” Thin Solid Films 406(1-2), 145–150 (2002).
    [Crossref]
  32. K. Takahashi, A. Kunz, D. Woiki, and P. Roth, “Thermal decomposition of tin tetrachloride based on Cl- and Sn-concentration measurements,” J. Phys. Chem. A 104(22), 5246–5253 (2000).
    [Crossref]
  33. J. Holleman, A. E. T. Kuiper, and J. F. Verweij, “Kinetics of the low pressure chemical vapor deposition of polycrystalline germanium-silicon alloys from SiH4 and GeH4,” J. Electrochem. Soc. 140(6), 1717 (1993).
    [Crossref]

2018 (3)

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

2017 (6)

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

2016 (7)

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: driving integrated optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
[Crossref]

S. Wirths, D. Buca, and S. Mantl, “Si-Ge-Sn alloys: From growth to applications,” Prog. Cryst. Growth Charact. Mater. 62(1), 1–39 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

2015 (2)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

2012 (2)

G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menéndez, “Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission,” Appl. Phys. Lett. 101(7), 072105 (2012).
[Crossref]

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

2010 (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2009 (1)

Z. Kiss’ovski, M. Kolev, A. Ivanov, S. Lishev, and I. Koleva, “Small surface wave discharge at atmospheric pressure,” J. Phys. D Appl. Phys. 42(18), 182004 (2009).
[Crossref]

2007 (2)

G. Isella, J. Osmond, M. Kummer, R. Kaufmann, and H. von Känel, “Heterojunction photodiodes fabricated from Ge/Si (100) layers grown by low-energy plasma-enhanced CVD,” Semicond. Sci. Technol. 22(1), S26–S28 (2007).
[Crossref]

J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17(17), 1649 (2007).
[Crossref]

2004 (1)

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

2002 (1)

J. J. Robbins, R. T. Alexander, W. Xiao, T. L. Vincent, and C. A. Wolden, “An investigation of tin oxide plasma-enhanced chemical vapor deposition using optical emission spectroscopy,” Thin Solid Films 406(1-2), 145–150 (2002).
[Crossref]

2000 (1)

K. Takahashi, A. Kunz, D. Woiki, and P. Roth, “Thermal decomposition of tin tetrachloride based on Cl- and Sn-concentration measurements,” J. Phys. Chem. A 104(22), 5246–5253 (2000).
[Crossref]

1993 (1)

J. Holleman, A. E. T. Kuiper, and J. F. Verweij, “Kinetics of the low pressure chemical vapor deposition of polycrystalline germanium-silicon alloys from SiH4 and GeH4,” J. Electrochem. Soc. 140(6), 1717 (1993).
[Crossref]

1987 (1)

N. Hata, A. Matsuda, and K. Tanaka, “Spectroscopic diagnostics of plasma‐chemical‐vapor deposition from silane and germane,” J. Appl. Phys. 61(8), 3055–3060 (1987).
[Crossref]

1986 (1)

R. A. Rudder, G. G. Fountain, and R. J. Markunas, “Remote plasma‐enhanced chemical‐vapor deposition of epitaxial Ge films,” J. Appl. Phys. 60(10), 3519–3522 (1986).
[Crossref]

Alexander, R. T.

J. J. Robbins, R. T. Alexander, W. Xiao, T. L. Vincent, and C. A. Wolden, “An investigation of tin oxide plasma-enhanced chemical vapor deposition using optical emission spectroscopy,” Thin Solid Films 406(1-2), 145–150 (2002).
[Crossref]

Alharthi, B.

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

Al-Kabi, S.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

Armand Pilon, F.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Aubin, J.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

Beeler, R. T.

G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menéndez, “Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission,” Appl. Phys. Lett. 101(7), 072105 (2012).
[Crossref]

Benamara, M.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

Bertrand, M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Bhargava, N.

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

Buca, D.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: driving integrated optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
[Crossref]

S. Wirths, D. Buca, and S. Mantl, “Si-Ge-Sn alloys: From growth to applications,” Prog. Cryst. Growth Charact. Mater. 62(1), 1–39 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

Burle, N.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Calvo, V.

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

Chelnokov, A.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

Chiussi, S.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Chizmeshya, A. V. G.

J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17(17), 1649 (2007).
[Crossref]

Chrastina, D.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Collier, B.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Dou, W.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

Du, W.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

Escoubas, S.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Faist, J.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Fountain, G. G.

R. A. Rudder, G. G. Fountain, and R. J. Markunas, “Remote plasma‐enhanced chemical‐vapor deposition of epitaxial Ge films,” J. Appl. Phys. 60(10), 3519–3522 (1986).
[Crossref]

Gassenq, A.

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

Geiger, R.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Ghetmiri, S.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Ghetmiri, S. A.

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

Grant, J. M.

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

Grant, P.

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Grant, P. C.

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

Grützmacher, D.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Grzybowski, G.

G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menéndez, “Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission,” Appl. Phys. Lett. 101(7), 072105 (2012).
[Crossref]

Guilloy, K.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

Hackbarth, T.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Hartmann, J. M.

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Hartmann, J.-M.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Hata, N.

N. Hata, A. Matsuda, and K. Tanaka, “Spectroscopic diagnostics of plasma‐chemical‐vapor deposition from silane and germane,” J. Appl. Phys. 61(8), 3055–3060 (1987).
[Crossref]

Herzog, H.-J.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Holländer, B.

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

Holleman, J.

J. Holleman, A. E. T. Kuiper, and J. F. Verweij, “Kinetics of the low pressure chemical vapor deposition of polycrystalline germanium-silicon alloys from SiH4 and GeH4,” J. Electrochem. Soc. 140(6), 1717 (1993).
[Crossref]

Ikonic, Z.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Isella, G.

G. Isella, J. Osmond, M. Kummer, R. Kaufmann, and H. von Känel, “Heterojunction photodiodes fabricated from Ge/Si (100) layers grown by low-energy plasma-enhanced CVD,” Semicond. Sci. Technol. 22(1), S26–S28 (2007).
[Crossref]

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Ivanov, A.

Z. Kiss’ovski, M. Kolev, A. Ivanov, S. Lishev, and I. Koleva, “Small surface wave discharge at atmospheric pressure,” J. Phys. D Appl. Phys. 42(18), 182004 (2009).
[Crossref]

Jiang, L.

G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menéndez, “Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission,” Appl. Phys. Lett. 101(7), 072105 (2012).
[Crossref]

Kasper, E.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Kaufmann, R.

G. Isella, J. Osmond, M. Kummer, R. Kaufmann, and H. von Känel, “Heterojunction photodiodes fabricated from Ge/Si (100) layers grown by low-energy plasma-enhanced CVD,” Semicond. Sci. Technol. 22(1), S26–S28 (2007).
[Crossref]

Kiss’ovski, Z.

Z. Kiss’ovski, M. Kolev, A. Ivanov, S. Lishev, and I. Koleva, “Small surface wave discharge at atmospheric pressure,” J. Phys. D Appl. Phys. 42(18), 182004 (2009).
[Crossref]

Kohen, D.

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

Kolev, M.

Z. Kiss’ovski, M. Kolev, A. Ivanov, S. Lishev, and I. Koleva, “Small surface wave discharge at atmospheric pressure,” J. Phys. D Appl. Phys. 42(18), 182004 (2009).
[Crossref]

Koleva, I.

Z. Kiss’ovski, M. Kolev, A. Ivanov, S. Lishev, and I. Koleva, “Small surface wave discharge at atmospheric pressure,” J. Phys. D Appl. Phys. 42(18), 182004 (2009).
[Crossref]

König, U.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Kouvetakis, J.

G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menéndez, “Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission,” Appl. Phys. Lett. 101(7), 072105 (2012).
[Crossref]

J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17(17), 1649 (2007).
[Crossref]

Kuchuk, A.

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

Kuiper, A. E. T.

J. Holleman, A. E. T. Kuiper, and J. F. Verweij, “Kinetics of the low pressure chemical vapor deposition of polycrystalline germanium-silicon alloys from SiH4 and GeH4,” J. Electrochem. Soc. 140(6), 1717 (1993).
[Crossref]

Kummer, M.

G. Isella, J. Osmond, M. Kummer, R. Kaufmann, and H. von Känel, “Heterojunction photodiodes fabricated from Ge/Si (100) layers grown by low-energy plasma-enhanced CVD,” Semicond. Sci. Technol. 22(1), S26–S28 (2007).
[Crossref]

Kunz, A.

K. Takahashi, A. Kunz, D. Woiki, and P. Roth, “Thermal decomposition of tin tetrachloride based on Cl- and Sn-concentration measurements,” J. Phys. Chem. A 104(22), 5246–5253 (2000).
[Crossref]

Li, B.

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

Lishev, S.

Z. Kiss’ovski, M. Kolev, A. Ivanov, S. Lishev, and I. Koleva, “Small surface wave discharge at atmospheric pressure,” J. Phys. D Appl. Phys. 42(18), 182004 (2009).
[Crossref]

Liu, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Luysberg, M.

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Mantl, S.

S. Wirths, D. Buca, and S. Mantl, “Si-Ge-Sn alloys: From growth to applications,” Prog. Cryst. Growth Charact. Mater. 62(1), 1–39 (2016).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

Margetis, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

Markunas, R. J.

R. A. Rudder, G. G. Fountain, and R. J. Markunas, “Remote plasma‐enhanced chemical‐vapor deposition of epitaxial Ge films,” J. Appl. Phys. 60(10), 3519–3522 (1986).
[Crossref]

Marzban, B.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Matsuda, A.

N. Hata, A. Matsuda, and K. Tanaka, “Spectroscopic diagnostics of plasma‐chemical‐vapor deposition from silane and germane,” J. Appl. Phys. 61(8), 3055–3060 (1987).
[Crossref]

Menéndez, J.

G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menéndez, “Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission,” Appl. Phys. Lett. 101(7), 072105 (2012).
[Crossref]

Milord, L.

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

Mortazavi, M.

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Mosleh, A.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

Mussler, G.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

Naseem, H.

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

Naseem, H. A.

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

Oehme, M.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Osmond, J.

G. Isella, J. Osmond, M. Kummer, R. Kaufmann, and H. von Känel, “Heterojunction photodiodes fabricated from Ge/Si (100) layers grown by low-energy plasma-enhanced CVD,” Semicond. Sci. Technol. 22(1), S26–S28 (2007).
[Crossref]

Pauc, N.

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Pham, T.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Profijt, H.

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

Quinde, R.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Reboud, V.

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

Robbins, J. J.

J. J. Robbins, R. T. Alexander, W. Xiao, T. L. Vincent, and C. A. Wolden, “An investigation of tin oxide plasma-enhanced chemical vapor deposition using optical emission spectroscopy,” Thin Solid Films 406(1-2), 145–150 (2002).
[Crossref]

Rössner, B.

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Roth, P.

K. Takahashi, A. Kunz, D. Woiki, and P. Roth, “Thermal decomposition of tin tetrachloride based on Cl- and Sn-concentration measurements,” J. Phys. Chem. A 104(22), 5246–5253 (2000).
[Crossref]

Rothman, J.

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Rouchon, D.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

Rudder, R. A.

R. A. Rudder, G. G. Fountain, and R. J. Markunas, “Remote plasma‐enhanced chemical‐vapor deposition of epitaxial Ge films,” J. Appl. Phys. 60(10), 3519–3522 (1986).
[Crossref]

Schulte-Braucks, C.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Schulze, J.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Sigg, H.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Smith, D. J.

G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menéndez, “Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission,” Appl. Phys. Lett. 101(7), 072105 (2012).
[Crossref]

Soref, R.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: driving integrated optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Soref, R. A.

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

Stange, D.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

Stoica, T.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

Sun, G.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

Takahashi, K.

K. Takahashi, A. Kunz, D. Woiki, and P. Roth, “Thermal decomposition of tin tetrachloride based on Cl- and Sn-concentration measurements,” J. Phys. Chem. A 104(22), 5246–5253 (2000).
[Crossref]

Tanaka, K.

N. Hata, A. Matsuda, and K. Tanaka, “Spectroscopic diagnostics of plasma‐chemical‐vapor deposition from silane and germane,” J. Appl. Phys. 61(8), 3055–3060 (1987).
[Crossref]

Thai, Q. M.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

Tolle, J.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

Tran, H.

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

Verweij, J. F.

J. Holleman, A. E. T. Kuiper, and J. F. Verweij, “Kinetics of the low pressure chemical vapor deposition of polycrystalline germanium-silicon alloys from SiH4 and GeH4,” J. Electrochem. Soc. 140(6), 1717 (1993).
[Crossref]

Vincent, T. L.

J. J. Robbins, R. T. Alexander, W. Xiao, T. L. Vincent, and C. A. Wolden, “An investigation of tin oxide plasma-enhanced chemical vapor deposition using optical emission spectroscopy,” Thin Solid Films 406(1-2), 145–150 (2002).
[Crossref]

Vohra, A.

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

von den Driesch, N.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

von Känel, H.

G. Isella, J. Osmond, M. Kummer, R. Kaufmann, and H. von Känel, “Heterojunction photodiodes fabricated from Ge/Si (100) layers grown by low-energy plasma-enhanced CVD,” Semicond. Sci. Technol. 22(1), S26–S28 (2007).
[Crossref]

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Werner, J.

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

Wirths, S.

S. Wirths, D. Buca, and S. Mantl, “Si-Ge-Sn alloys: From growth to applications,” Prog. Cryst. Growth Charact. Mater. 62(1), 1–39 (2016).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

Witzens, J.

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Woiki, D.

K. Takahashi, A. Kunz, D. Woiki, and P. Roth, “Thermal decomposition of tin tetrachloride based on Cl- and Sn-concentration measurements,” J. Phys. Chem. A 104(22), 5246–5253 (2000).
[Crossref]

Wolden, C. A.

J. J. Robbins, R. T. Alexander, W. Xiao, T. L. Vincent, and C. A. Wolden, “An investigation of tin oxide plasma-enhanced chemical vapor deposition using optical emission spectroscopy,” Thin Solid Films 406(1-2), 145–150 (2002).
[Crossref]

Xiao, W.

J. J. Robbins, R. T. Alexander, W. Xiao, T. L. Vincent, and C. A. Wolden, “An investigation of tin oxide plasma-enhanced chemical vapor deposition using optical emission spectroscopy,” Thin Solid Films 406(1-2), 145–150 (2002).
[Crossref]

Yu, S.-Q.

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: driving integrated optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

Zabel, T.

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

Zhou, Y.

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

ACS Photonics (2)

D. Stange, S. Wirths, R. Geiger, C. Schulte-Braucks, B. Marzban, N. von den Driesch, G. Mussler, T. Zabel, T. Stoica, J.-M. Hartmann, S. Mantl, Z. Ikonic, D. Grützmacher, H. Sigg, J. Witzens, and D. Buca, “Optically pumped GeSn microdisk lasers on Si,” ACS Photonics 3(7), 1279–1285 (2016).
[Crossref]

J. Margetis, S. Al-Kabi, W. Du, W. Dou, Y. Zhou, T. Pham, P. Grant, S. Ghetmiri, A. Mosleh, B. Li, J. Liu, G. Sun, R. Soref, J. Tolle, M. Mortazavi, and S.-Q. Yu, “Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K,” ACS Photonics 5(3), 827–833 (2018).
[Crossref]

Appl. Phys. Lett. (4)

G. Grzybowski, R. T. Beeler, L. Jiang, D. J. Smith, J. Kouvetakis, and J. Menéndez, “Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission,” Appl. Phys. Lett. 101(7), 072105 (2012).
[Crossref]

V. Reboud, A. Gassenq, N. Pauc, J. Aubin, L. Milord, Q. M. Thai, M. Bertrand, K. Guilloy, D. Rouchon, J. Rothman, T. Zabel, F. Armand Pilon, H. Sigg, A. Chelnokov, J. M. Hartmann, and V. Calvo, “Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μ m up to 180 K,” Appl. Phys. Lett. 111(9), 092101 (2017).
[Crossref]

A. Gassenq, L. Milord, J. Aubin, N. Pauc, K. Guilloy, J. Rothman, D. Rouchon, A. Chelnokov, J. M. Hartmann, V. Reboud, and V. Calvo, “Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content,” Appl. Phys. Lett. 110(11), 112101 (2017).
[Crossref]

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, W. Dou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “An optically pumped 2.5 μm GeSn laser on Si operating at 110 K,” Appl. Phys. Lett. 109(17), 171105 (2016).
[Crossref]

Chem. Mater. (1)

N. von den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. M. Hartmann, T. Stoica, S. Mantl, D. Grützmacher, and D. Buca, “Direct bandgap group IV epitaxy on Si for laser applications,” Chem. Mater. 27(13), 4693–4702 (2015).
[Crossref]

J. Appl. Phys. (3)

N. Hata, A. Matsuda, and K. Tanaka, “Spectroscopic diagnostics of plasma‐chemical‐vapor deposition from silane and germane,” J. Appl. Phys. 61(8), 3055–3060 (1987).
[Crossref]

H. Tran, W. Du, S. A. Ghetmiri, A. Mosleh, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, H. A. Naseem, and S.-Q. Yu, “Systematic study of Ge1−xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics,” J. Appl. Phys. 119(10), 103106 (2016).
[Crossref]

R. A. Rudder, G. G. Fountain, and R. J. Markunas, “Remote plasma‐enhanced chemical‐vapor deposition of epitaxial Ge films,” J. Appl. Phys. 60(10), 3519–3522 (1986).
[Crossref]

J. Cryst. Growth (2)

J. Aubin, J. M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layers,” J. Cryst. Growth 473, 20–27 (2017).
[Crossref]

J. Margetis, A. Mosleh, S. Al-Kabi, S. A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H. A. Naseem, S.-Q. Yu, and J. Tolle, “Study of low-defect and strain-relaxed GeSn growth via reduced pressure CVD in H2 and N2 carrier gas,” J. Cryst. Growth 463, 128–133 (2017).
[Crossref]

J. Electrochem. Soc. (1)

J. Holleman, A. E. T. Kuiper, and J. F. Verweij, “Kinetics of the low pressure chemical vapor deposition of polycrystalline germanium-silicon alloys from SiH4 and GeH4,” J. Electrochem. Soc. 140(6), 1717 (1993).
[Crossref]

J. Electron. Mater. (3)

B. Alharthi, J. M. Grant, W. Dou, P. C. Grant, A. Mosleh, W. Du, M. Mortazavi, B. Li, H. Naseem, and S.-Q. Yu, “Heteroepitaxial growth of germanium-on-silicon using ultrahigh-vacuum chemical vapor deposition with RF plasma enhancement,” J. Electron. Mater. 47, 1–10 (2018).

S. Al-Kabi, S. A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, W. Dou, G. Sun, R. A. Soref, J. Tolle, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications,” J. Electron. Mater. 45(12), 6251–6257 (2016).
[Crossref]

W. Dou, S. A. Ghetmiri, S. Al-Kabi, A. Mosleh, Y. Zhou, B. Alharthi, W. Du, J. Margetis, J. Tolle, A. Kuchuk, M. Benamara, B. Li, H. A. Naseem, M. Mortazavi, and S.-Q. Yu, “Structural and Optical Characteristics of GeSn Quantum Wells for Silicon-Based Mid-Infrared Optoelectronic Applications,” J. Electron. Mater. 45(12), 6265–6272 (2016).
[Crossref]

J. Mater. Chem. (1)

J. Kouvetakis and A. V. G. Chizmeshya, “New classes of Si-based photonic materials and device architectures via designer molecular routes,” J. Mater. Chem. 17(17), 1649 (2007).
[Crossref]

J. Phys. Chem. A (1)

K. Takahashi, A. Kunz, D. Woiki, and P. Roth, “Thermal decomposition of tin tetrachloride based on Cl- and Sn-concentration measurements,” J. Phys. Chem. A 104(22), 5246–5253 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

Z. Kiss’ovski, M. Kolev, A. Ivanov, S. Lishev, and I. Koleva, “Small surface wave discharge at atmospheric pressure,” J. Phys. D Appl. Phys. 42(18), 182004 (2009).
[Crossref]

J. Vac. Sci. Technol. B (1)

P. C. Grant, W. Dou, B. Alharthi, J. M. Grant, A. Mosleh, W. Du, B. Li, M. Mortazavi, H. A. Naseem, and S.-Q. Yu, “Comparison study of the low temperature growth of dilute GeSn and Ge,” J. Vac. Sci. Technol. B 35(6), 061204 (2017).

Mater. Sci. Semicond. Process. (1)

J. Margetis, A. Mosleh, S. A. Ghetmiri, S. Al-Kabi, W. Dou, W. Du, N. Bhargava, S.-Q. Yu, H. Profijt, D. Kohen, A. Vohra, and J. Tolle, “Fundamentals of Ge1−xSnx and SiyGe1−x-ySnx RPCVD epitaxy,” Mater. Sci. Semicond. Process. 70, 38–43 (2017).
[Crossref]

Nat. Photonics (2)

S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, J. M. Hartmann, H. Sigg, J. Faist, D. Buca, and D. Grützmacher, “Lasing in direct-bandgap GeSn alloy grown on Si,” Nat. Photonics 9(2), 88–92 (2015).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Opt. Photonics News (1)

R. Soref, D. Buca, and S.-Q. Yu, “Group IV Photonics: driving integrated optoelectronics,” Opt. Photonics News 27(1), 32 (2016).
[Crossref]

Prog. Cryst. Growth Charact. Mater. (1)

S. Wirths, D. Buca, and S. Mantl, “Si-Ge-Sn alloys: From growth to applications,” Prog. Cryst. Growth Charact. Mater. 62(1), 1–39 (2016).
[Crossref]

Sci. Rep. (1)

W. Dou, M. Benamara, A. Mosleh, J. Margetis, P. Grant, Y. Zhou, S. Al-Kabi, W. Du, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth,” Sci. Rep. 8(1), 5640 (2018).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

G. Isella, J. Osmond, M. Kummer, R. Kaufmann, and H. von Känel, “Heterojunction photodiodes fabricated from Ge/Si (100) layers grown by low-energy plasma-enhanced CVD,” Semicond. Sci. Technol. 22(1), S26–S28 (2007).
[Crossref]

Solid-State Electron. (1)

G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.-J. Herzog, U. König, and H. von Känel, “Low-energy plasma-enhanced chemical vapor deposition for strained Si and Ge heterostructures and devices,” Solid-State Electron. 48(8), 1317–1323 (2004).
[Crossref]

Thin Solid Films (2)

E. Kasper, J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, “Growth of silicon based germanium tin alloys,” Thin Solid Films 520(8), 3195–3200 (2012).
[Crossref]

J. J. Robbins, R. T. Alexander, W. Xiao, T. L. Vincent, and C. A. Wolden, “An investigation of tin oxide plasma-enhanced chemical vapor deposition using optical emission spectroscopy,” Thin Solid Films 406(1-2), 145–150 (2002).
[Crossref]

Other (3)

S. Kasap, Handbook of Electronic and Photonic Materials (Springer, 2006).

M. A., (M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley-Interscience, 2005).

W. Dou, Y. Zhou, J. Margetis, S. Ghetmiri, S. Al-Kabi, W. Du, J. Liu, G. Sun, R. Soref, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “Optically pumped lasing at 3 µm from compositionally graded GeSn with Sn up to 22.3%,” Submitted to Optica.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) A schematic diagram of PE-CVD system. (b) The generation of plasma between cathode plate and Si wafer in the CVD reactor. (c) The grown GeSn on Si wafer after PE-CVD process. The probing spots I, II, and III were marked on the wafer.
Fig. 2
Fig. 2 Raman spectroscopies of (a) sample A and (b) sample B at the spots of I, II, and III. A comparison of the Raman spectra for all samples is shown in (c).
Fig. 3
Fig. 3 (a) The 2Theta-Omega XRD curves of samples A, B, and E from (004) plane. The reciprocal space mapping of (b) sample A and (c) sample B from ( 2 ¯ 2 ¯ 4) plane.
Fig. 4
Fig. 4 (a) The bright field TEM images at the spot III of sample B. (b) The zoom-in TEM image at area A (Surface of GeSn). Inset: High resolution TEM image. (c) The zoom-in image at area B (Interface between GeSn and Si). Stacking faults (S.F.) were observed at the interface. Inset: Fast Fourier transform (FFT) pattern.
Fig. 5
Fig. 5 Room-temperature PLs of (a) sample A and (b) sample B at different probing spots on the Si wafer. (c) The comparison of PL spectra for five samples.
Fig. 6
Fig. 6 (a) The absorption coefficients of five samples. (b) The data fitting of absorption edges for direct bandgap energy E g Γ for samples A, B, and E.
Fig. 7
Fig. 7 Left: The buildup of electric potential in both bulk plasma and sheath. Right: The ion transportation process from bulk plasma to Si wafer.

Tables (2)

Tables Icon

Table 1 The summary of growth recipes of five Ge(Sn) samples by both PE-CVD and conventional CVD.

Tables Icon

Table 2 The summary of film thicknesses and growth rates of five Ge(Sn) samples grown by PE-CVD and conventional CVD.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

(αhυ) 2 =A(hυ E g Γ )

Metrics