Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Widely tunable S-band ring-cavity Tm3+-doped fluorotellurite fiber laser

Not Accessible

Your library or personal account may give you access

Abstract

Tm3+-doped fluorotellurite fibers (TDFTFs) are fabricated by using a rod-in-tube method. A 2.1 m long TDFTF is used as the gain medium, in which both ends of the TDFTF are connected to a short piece of a silica fiber by direct fusion splicing. By inserting the above TDFTF and a tunable optical bandpass filter into a ring cavity and employing a 1400/1570 nm dual-wavelength pumping technique, tunable lasing from 1460 to 1526 nm is obtained, which almost covers the whole S-band. To the best of our knowledge, this is the first report of tunable Tm3+-doped fiber laser with a tunable range almost covering the whole S-band. Furthermore, by removing the tunable optical bandpass filter from the ring cavity, free-running multi-wavelength lasers at 1500 and 1901 nm are achieved. Our results show that TDFTFs are promising gain media for constructing S-band fiber lasers.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Thulium-doped fluorotellurite glass fibers for broadband S-band amplifiers

Junjie Wang, Zhixu Jia, Chuanze Zhang, Yan Sun, Yasutake Ohishi, Weiping Qin, and Guanshi Qin
Opt. Lett. 47(8) 1964-1967 (2022)

Watt-level 815 nm lasing from Tm3+-doped fluorotellurite glass fibers

Junjie Wang, Zhixu Jia, Yingshuai Ren, Chuanze Zhang, Yasutake Ohishi, Weiping Qin, and Guanshi Qin
Opt. Lett. 48(24) 6476-6479 (2023)

Intense emission at 605 nm from Pr3+-doped fluorotellurite glass fibers

Jinming Yan, Zhixu Jia, Junjie Wang, Chuanze Zhang, Fangning Wang, Fanchao Meng, Yasutake Ohishi, Daming Zhang, Weiping Qin, Fei Wang, and Guanshi Qin
Opt. Lett. 49(9) 2225-2228 (2024)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.