Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Qudit-based high-dimensional controlled-not gate

Not Accessible

Your library or personal account may give you access

Abstract

High-dimensional quantum systems expand quantum channel capacity and information storage space. By implementing high-dimensional quantum logic gates, the speed of quantum computing can be practically enhanced. We propose a deterministic 4 × 4-dimensional controlled-not (CNOT) gate for a hybrid system without ancillary qudits required, where the spatial and polarization states of a single photon serve as a control qudit of four dimensions, whereas two electron-spin states in nitrogen-vacancy (NV) centers act as a four-dimensional target qudit. As the control qudits are easily operated employing simple optical elements and the target qudits are available for storage, the CNOT gate works in a deterministic way, and it can be flexibly extended to n × n-dimensional (n > 4) quantum gates for other hybrid systems or different photonic degrees of freedoms. The efficiency and fidelity of the CNOT gate are analyzed aligning with current technological capabilities, finding that they have satisfactory performances.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Decoherence-free-subspace-based deterministic conversions for entangled states with heralded robust-fidelity quantum gates

Fang-Fang Du, Xue-Mei Ren, Zhi-Guo Fan, Ling-Hui Li, Xin-Shan Du, Ming Ma, Gang Fan, and Jing Guo
Opt. Express 32(2) 1686-1700 (2024)

Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond

Liu-Yong Cheng, Hong-Fu Wang, and Shou Zhang
J. Opt. Soc. Am. B 30(7) 1821-1826 (2013)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.