Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

On-chip germanium photodetector with interleaved junctions for the 2-µm wave band

Not Accessible

Your library or personal account may give you access

Abstract

Recently, the 2-µm wave band has gained increased interest due to its potential application for the next-generation optical communication. As a proven integration platform, silicon photonics also benefit from the lower nonlinear absorption and larger electro-optic coefficient. However, this spectral range is far beyond the photodetection range of germanium, which places an ultimate limit for on-chip applications. In this work, we demonstrate a waveguide-coupled photodetector enabled by a tensile strain-induced absorption in germanium. Responsivity is greatly enhanced by the proposed interleaved junction structure. The device is designed on a 220-nm silicon-on-insulator and is fabricated via a standard silicon photonic foundry process. By utilizing different interleaved PN junction spacing configurations, we were able to measure a responsivity of 0.107 A/W at 1950 nm with a low bias voltage of −6.4 V for the 500-μm-long device. Additionally, the 3-dB bandwidth of the device was measured to be up to 7.1 GHz. Furthermore, we successfully achieved data transmission at a rate of 20 Gb/s using non-return-to-zero on–off keying modulation.

© 2024 Optica Publishing Group

Full Article  |  PDF Article

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.