Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Loss–gain compensated anti-Hermitian magnetodielectric medium to realize Tellegen nihility effects

Not Accessible

Your library or personal account may give you access

Abstract

Generalized duality transformations significantly modify the constitutive relations of electromagnetic media, preserving principal electromagnetic properties. Here, we contemplate transformation of Tellegen nihility as a specific type of extreme-property nonreciprocal bi-isotropic media and show that some intriguing electromagnetic properties of that medium can be realized in a particular class of isotropic magnetodielectric media without magnetoelectric coupling. We show that the permittivity and permeability of the corresponding transformed medium have equal absolute values and opposite signs. Depending on the value of the Tellegen parameter of the original medium, the transformed magnetodielectric medium can be Hermitian, non-Hermitian, or anti-Hermitian, which simultaneously exhibits loss and gain. Focusing on the latter class of anti-Hermitian media, we theoretically and numerically demonstrate that this extraordinary medium allows propagation of electromagnetic plane waves having zero time-averaged Poynting vector, similarly to the original Tellegen nihility media. Hopefully, this work can open novel opportunities for manipulating electromagnetic fields.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Chiral nihility effects on energy flow in chiral materials

Cheng-Wei Qiu, Nawaz Burokur, Saïd Zouhdi, and Le-Wei Li
J. Opt. Soc. Am. A 25(1) 55-63 (2008)

Broadband Bragg phenomenon in a uniform birefringent medium

Martin W. McCall and Stefanos Fr. Koufidis
Opt. Lett. 48(5) 1096-1099 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.