Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser-reduced graphene oxide for a flexible liquid sliding sensing surface

Not Accessible

Your library or personal account may give you access

Abstract

Flexible electronic skin is a flexible sensor system that imitates human skin. Recently, flexible sensors have been successfully developed. However, the droplet sliding sensing technology on a flexible electronic skin surface is still challenging. In this Letter, a flexible droplet sliding sensing surface is proposed and fabricated by laser-reduced graphene oxide (LRGO). The LRGO shows porous structures and low surface energy, which are beneficial for infusing lubricants and fabricating stable slippery surfaces. The slippery surface guarantees free sliding of droplets. The droplet sliding sensing mechanism is a combination of triboelectricity and electrostatic induction. After a NaCl droplet slides from lubricant-infused LRGO, a potential difference (∼0.2 mV) can be measured between two Ag electrodes. This study reveals considerable potential applications in intelligent robots and the medical field.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Facile fabrication of flexible graphene FETs by sunlight reduction of graphene oxide

Jia-Nan Ma, Yan He, Yan Liu, Dong-Dong Han, Yu-Qing Liu, Jiang-Wei Mao, Hao-Bo Jiang, and Yong-Lai Zhang
Opt. Lett. 42(17) 3403-3406 (2017)

Programmable patterning fabrication of laser-induced graphene-MXene composite electrodes for flexible planar supercapacitors

Xiu-Yan Fu, Yu-Yin Zhang, Chang-Jing Ma, and Hao-Bo Jiang
Opt. Lett. 47(6) 1502-1505 (2022)

Enhanced strain and temperature sensing by reduced graphene oxide coated etched fiber Bragg gratings

Sridevi. S, K. S. Vasu, S. Asokan, and A. K. Sood
Opt. Lett. 41(11) 2604-2607 (2016)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.