Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Immobilization of photorefractive solitons by charge anchoring on conductive walls

Not Accessible

Your library or personal account may give you access

Abstract

Spatial solitons have shown great promise for various applications, but their limited stability in terms of beam movement has been a significant hindrance. This limitation is especially prominent in the conventional configuration where the bias electric field is oriented perpendicular to the soliton propagation direction, leading to instability caused by the drift–diffusion processes. To address this issue, we explore a novel, to the best of our knowledge, approach where solitons are propagated from one bias plate to the other, with a tilted angle with respect to the field and to the optical axis of the photorefractive crystal. By directing the solitons toward the bias electrodes, we observe an intriguing anchoring effect that immobilizes the soliton beam, resulting in reduced self-bending. The charge distribution on the conductive walls is numerically investigated as a function of the crystallographic orientation of the c-axis. The immobilization of the soliton beams is a fundamental issue for their technological applications as waveguides in integrated photonic circuits, which would result in an addressable but perfectly stable waveguide over time.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Spatial solitons in centrosymmetric photorefractive media

Mordechai Segev and Aharon J. Agranat
Opt. Lett. 22(17) 1299-1301 (1997)

Fixing the photorefractive soliton

Matt Klotz, Hongxing Meng, Gregory J. Salamo, Mordechai Segev, and Steven R. Montgomery
Opt. Lett. 24(2) 77-79 (1999)

Data availability

The research data are generated by the direct application of the model and of its associated equations.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.