Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

High transparent conductive Ga-doped ZnO-based multilayer thin films with embedded ultrathin TiN layer deposited in oxygen-containing atmosphere

Not Accessible

Your library or personal account may give you access

Abstract

To avoid metal layer oxidation during the deposition of transparent conductive oxide (TCO)/metal/TCO multilayer films in an oxygen-containing atmosphere, the ultra-thin (<10 nm) titanium nitride (TiN) layer has been proposed to replace metal embedding in gallium-doped zinc oxide (GZO) film for the development of indium-free transparent electrodes. The effects of TiN thickness on the structure, morphology, electrical, and optical properties of GZO/TiN/GZO multilayer thin films deposited in argon–oxygen mixtures on glass substrates by magnetron sputtering are investigated. The experimental results reveal that multilayers with the 8 nm-thick TiN layer have the optimal performance (figure of merit of 2.75 × 10−1 Ω−1): resistivity of 4.68 × 10−5 Ω cm, and optical transmittance of above 91% in the visible region, which is superior to the sandwich film with the metal embedded layer.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Improved performance of transparent-conducting AZO/Cu/AZO multilayer thin films by inserting a metal Ti layer for flexible electronics

Shihui Yu, Yifan Liu, Haoran Zheng, Lingxia Li, and Yongtao Sun
Opt. Lett. 42(15) 3020-3023 (2017)

Ar plasma irradiation improved optical and electrical properties of TiO2/Ag/TiO2 multilayer thin film

Yingcui Fang, Jinjun He, Kang Zhang, Chuanyun Xiao, Bing Zhang, Jie Shen, Haihong Niu, Rong Yan, and Junling Chen
Opt. Lett. 40(23) 5455-5458 (2015)

Supplementary Material (1)

NameDescription
Supplement 1       Spectroscopic ellipsometry parameters delta and psi of S8

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.