Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Broadband linear frequency modulation signal compression based on a spectral Talbot effect

Not Accessible

Your library or personal account may give you access

Abstract

Broadband linear frequency modulation (LFM) signals with a long duration are widely used in radar and broadband communication systems. The LFM signals are compressed to a Fourier-transform-limited pulse train after matched filtering, which effectively improves the signal-to-noise ratio (SNR) of detection. Quadratic phase response is the key component of matched filtering, which can be achieved by phase filters or dispersion elements. Suffering from the limited resolution of phase filters and complex equivalent large dispersion structures, pulse compression of broadband LFM signals with a long duration remains an open challenge. In this paper, LFM signal compression based on the spectral Talbot effect is proposed and experimentally demonstrated, where ultra-large equivalent dispersion (around 1.7 × 109 ps/nm) is realized by a simple optical filter ring. Experimentally, the LFM signal with a bandwidth of 12 GHz and a duration of 163 µs is compressed into a Fourier-transform-limited pulse train, which improves the SNR by 24 dB. Moreover, the proposed method also measures the delay difference between two LFM signals, ranging from 0 to 110 ns.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Time reversal of broadband microwave signal based on frequency conversion of multiple subbands

Xiangzhi Xie, Guchang Chen, Feifei Yin, Kun Xu, Jose Capmany, and Yitang Dai
Opt. Lett. 48(8) 2110-2113 (2023)

Photonics-based coherent wideband linear frequency modulation pulsed signal generation

Yitian Tong, Daming Han, Ran Cheng, Zhangweiyi Liu, Weilin Xie, Jie Qin, and Yi Dong
Opt. Lett. 43(5) 1023-1026 (2018)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.