Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

In vivo brain temperature mapping using polymer optical fiber Bragg grating sensors

Not Accessible

Your library or personal account may give you access

Abstract

Variation of the brain temperature is strongly affected by blood flow, oxygen supply, and neural cell metabolism. Localized monitoring of the brain temperature is one of the most effective ways to correlate brain functions and diseases such as stroke, epilepsy, and mood disorders. While polymer optical fibers (POFs) are considered ideal candidates for temperature sensing in the brain, they have never been used so far in vivo. Here, we developed for the first, to the best of our knowledge, time an implantable probe based on a microstructured polymer optical fiber Bragg grating (FBG) sensor for intracranial brain temperature mapping. The temperature at different depths of the brain (starting from the cerebral cortex) and the correlation between the brain and body core temperature of a rat were recorded with a sensitivity of 33 pm/°C and accuracy <0.2°C. Our in vivo experimental results suggest that the proposed device can achieve real-time and high-resolution local temperature measurement in the brain, as well as being integrated with existing neural interfaces.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Characterization of a new polymer optical fiber with enhanced sensing capabilities using a Bragg grating

Arnaldo Leal-Junior, Antreas Theodosiou, Anselmo Frizera-Neto, Maria José Pontes, Ehud Shafir, Oleg Palchik, Nadav Tal, Shlomi Zilberman, Garry Berkovic, Paulo Antunes, Paulo André, Kyriacos Kalli, and Carlos Marques
Opt. Lett. 43(19) 4799-4802 (2018)

Enhancing the sensitivity of poly(methyl methacrylate) based optical fiber Bragg grating temperature sensors

Wei Zhang, David J. Webb, and Gang-Ding Peng
Opt. Lett. 40(17) 4046-4049 (2015)

Fiber-end suspended polymer micro-rod inscribed with Bragg grating for highly sensitive ultrasonic detection

Huanhuan Yin, Zhihua Shao, Ruohui Wang, and Xueguang Qiao
Opt. Lett. 48(22) 5911-5914 (2023)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.