Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Autocorrelation analysis-based OCT velocimetry for axial blood flow velocity imaging of the cerebral capillary network

Not Accessible

Your library or personal account may give you access

Abstract

The accurate measurement of blood flow velocity in the capillary network is challenging due to the small size of the vessels and the slow flow of red blood cells (RBCs) within the vessel. Here, we introduce an autocorrelation analysis-based optical coherence tomography (OCT) method that takes less acquisition time to measure the axial blood flow velocity in the capillary network. The axial blood flow velocity was obtained from the phase change in the decorrelation period of the first-order field autocorrelation function (g1) of the OCT field data, which was acquired with M-mode acquisition (repeated A-scans). The rotation center of g1 in the complex plane was first re-centralized to the origin, then the phase change due to the movement of RBCs was extracted in the g1 decorrelation period which is usually 0.2–0.5 ms. In phantom experiments, the results suggest that the proposed method could accurately measure the axial speed with a wide range of 0.5–15 mm/s. We further tested the method on living animals. Compared with the phase-resolved Doppler optical coherence tomography (pr-DOCT), the proposed method can obtain robust axial velocity measurements with more than five times shorter acquisition time.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Capillary red blood cell velocimetry by phase-resolved optical coherence tomography

Jianbo Tang, Sefik Evren Erdener, Buyin Fu, and David A. Boas
Opt. Lett. 42(19) 3976-3979 (2017)

Cerebral capillary velocimetry based on temporal OCT speckle contrast

Woo June Choi, Yuandong Li, Wan Qin, and Ruikang K. Wang
Biomed. Opt. Express 7(12) 4859-4873 (2016)

OCT methods for capillary velocimetry

Vivek J. Srinivasan, Harsha Radhakrishnan, Eng H. Lo, Emiri T. Mandeville, James Y. Jiang, Scott Barry, and Alex E. Cable
Biomed. Opt. Express 3(3) 612-629 (2012)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.