Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Superior atomic coherence time controlled by crystal phase transition and optical dressing

Not Accessible

Your library or personal account may give you access

Abstract

We compare the atomic coherence time of doped ion crystals, i.e., BiPO4: Eu3+, YPO4: Eu3+, YPO4: Pr3+, and Y2SiO5: Pr3 + crystals. Such atomic coherence time is controlled by crystal field splitting (CF-splitting) and optical (photon and phonon) dressing. Compared with the other doped ion crystals, BiPO4: Eu3+ exhibits the longest coherence time. By controlling thermal phonon, phase-transition phonon, broadband or narrowband excitation, and fluorescence (FL) or spontaneous four-wave-mixing ratio (S-FWM), a superior atomic coherence time of up to 10 ± 0.6 ms is achieved in the pure hexagonal (0.5:1) phase of BiPO4: Eu3+. Furthermore, the relationship between TAT-splitting and spectral Autler–Townes (SAT)-splitting was investigated. This superior atomic coherence time has potential applications in quantum memory devices.

© 2022 Optica Publishing Group

Full Article  |  PDF Article

Supplementary Material (1)

NameDescription
Supplement 1       Supplementary material

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.