Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Meta-learning-enabled accurate OSNR monitoring of directly detected QAM signals with one-shot training

Not Accessible

Your library or personal account may give you access

Abstract

We experimentally demonstrate meta-learning-enabled accurate optical signal-to-noise ratio (OSNR) monitoring of directly detected 16QAM signals with extremely few training data. When one-shot training, where one amplitude histogram (AH) for each OSNR value includes only 2000 data samples, is implemented for a 16QAM signal within a variable OSNR range of 15–24 dB, the experimental root mean squared error (RMSE) of the retraining technique is 1.53 dB. For transfer learning from the 16QAM simulation to the experimentally generated AH, the RMSE can be reduced to 1.11 dB. In comparison with both the retraining and transfer learning techniques, the RMSE of meta-learning-enabled OSNR monitoring can be further reduced by 42.8% and 22.3%, respectively. In order to reach the optimal accuracy with an RMSE of 0.66 dB, the meta-learning technique requires only 15 AHs for each OSNR value to be monitored, while the retraining and the transfer learning techniques need 20 and 25 AHs, respectively.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Knowledge distillation technique enabled hardware efficient OSNR monitoring from directly detected PDM-QAM signals

Junjiang Xiang, Yijun Cheng, Shiwen Chen, Meng Xiang, Yuwen Qin, and Songnian Fu
J. Opt. Commun. Netw. 14(11) 916-923 (2022)

Transfer learning simplified multi-task deep neural network for PDM-64QAM optical performance monitoring

Yijun Cheng, Wenkai Zhang, Songnian Fu, Ming Tang, and Deming Liu
Opt. Express 28(5) 7607-7617 (2020)

Multi-task deep neural network (MT-DNN) enabled optical performance monitoring from directly detected PDM-QAM signals

Yijun Cheng, Songnian Fu, Ming Tang, and Deming Liu
Opt. Express 27(13) 19062-19074 (2019)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.