Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Turbulence-resilient pilot-assisted self-coherent free-space optical communications using a photodetector array for bandwidth enhancement

Not Accessible

Your library or personal account may give you access

Abstract

We experimentally demonstrate a 4-Gbit/s 16-QAM pilot-assisted, self-coherent, and turbulence-resilient free-space optical link using a photodetector (PD) array. The turbulence resilience is enabled by the efficient optoelectronic mixing of the data and pilot beams in a free-space-coupled receiver, which can automatically compensate for turbulence-induced modal coupling to recover the data’s amplitude and phase. For this approach, a sufficient PD area might be needed to collect the beams while the bandwidth of a single larger PD could be limited. In this work, we use an array of smaller PDs instead of a single larger PD to overcome the beam collection and bandwidth response trade-off. In the PD-array-based receiver, the data and pilot beams are efficiently mixed in the aggregated PD area formed by four PDs, and the four mixing outputs are electrically combined for data recovery. The results show that: (i) either with or without turbulence effects (D/r0 = ∼8.4), the 1-Gbaud 16-QAM signal recovered by the PD array has a lower error vector magnitude than that of a single larger PD; (ii) for 100 turbulence realizations, the pilot-assisted PD-array receiver recovers 1-Gbaud 16-QAM data with a bit-error rate below 7% of the forward error correction limit; and (iii) for 1000 turbulence realizations, the average electrical mixing power loss of a single smaller PD, a single larger PD, and a PD array is ∼5.5 dB, ∼1.2 dB, and ∼1.6 dB, respectively.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Turbulence mitigation of four mode-division-multiplexed QPSK channels in a pilot-assisted self-coherent free-space optical link using a photodetector array and DSP-based channel demultiplexing

Huibin Zhou, Hao Song, Xinzhou Su, Yuxiang Duan, Kaiheng Zou, Runzhou Zhang, Moshe Tur, and Alan E. Willner
Opt. Lett. 49(5) 1209-1212 (2024)

Automatic turbulence mitigation for coherent free-space optical links using crystal-based phase conjugation and fiber-coupled data modulation

Huibin Zhou, Yuxiang Duan, Hao Song, Xinzhou Su, Zhe Zhao, Kaiheng Zou, Haoqian Song, Runzhou Zhang, Robert W. Boyd, Moshe Tur, and Alan E. Willner
Opt. Lett. 48(8) 2194-2197 (2023)

Demonstration of turbulence mitigation in a 200-Gbit/s orbital-angular-momentum multiplexed free-space optical link using simple power measurements for determining the modal crosstalk matrix

Nanzhe Hu, Haoqian Song, Runzhou Zhang, Huibin Zhou, Cong Liu, Xinzhou Su, Hao Song, Kai Pang, Kaiheng Zou, Brittany Lynn, Moshe Tur, and Alan E. Willner
Opt. Lett. 47(14) 3539-3542 (2022)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.