Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effectively writing low propagation and bend loss waveguides in the silica glass by using a femtosecond laser

Not Accessible

Your library or personal account may give you access

Abstract

We report writing low-loss waveguides (WGs) by using a femtosecond laser in silica glass. A record low propagation loss of 0.07 dB/cm is achieved, and the lowest bend loss reaches 0.001 dB/mm with the bend radius of 30 mm. The optimal effective writing speed reaches 125 µm/s, which is two orders higher than the previous reported value. Fan-out devices with well controllable low loss for three-dimensional photonic integration are also fabricated. This work provides an effective strategy to create WG devices for 3D high-density photonic integration.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Fabricating low loss waveguides over a large depth in glass by temperature gradient assisted femtosecond laser writing

Dezhi Tan, Xiaoyu Sun, Qian Wang, Peng Zhou, Yongping Liao, and Jianrong Qiu
Opt. Lett. 45(14) 3941-3944 (2020)

Femtosecond laser writing of Bragg grating waveguide bundles in bulk glass

Markus Thiel, Günter Flachenecker, and Wolfgang Schade
Opt. Lett. 40(7) 1266-1269 (2015)

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.