Abstract

A novel scheme of radiation-resistant flatness-shaped spectrum erbium-doped photonic crystal fiber source (EDPCFS) employing multiple self-compensating methods is proposed. We first develop a sort of radiation-resistant highly erbium-doped photonic crystal fiber (EDPCF) with the cutoff wavelength of 520 nm, which ensures that the pump light and most energy of the green light from upconversion of ${{\rm Er}^{3 +}}$ could participate in photo-annealing to reduce the radiation-induced background attenuation (RIBA) of the EDPCFS under radiation environment. To minimize the spectrum variation from radiation-induced active band attenuation (RIABA), the original spectrum is optimized employing an improved double pumped backward (DPB) configuration. With a gain flattening filter and closed-loop feedback control technology, a radiation-resistant EDPCFS with a linewidth larger than 41 nm is achieved, and it experimentally demonstrates a significantly improved mean-wavelength stability of 0.42 ppm/krad with the output power attenuation of 0.09 dB under $\gamma$-irradiation of 200 krad. The novel radiation-resistant EDPCFS proposed is quite feasible for strategic interferometric fiber-optic gyroscopes (IFOGs) working in high-dose radiation environment.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-stability erbium-doped photonic crystal fiber source

Xu Wu, Shuang-chen Ruan, Cheng-xiang Liu, and Li Zhang
Appl. Opt. 51(13) 2277-2281 (2012)

Transmissive resonant fiber-optic gyroscope employing Kagome hollow-core photonic crystal fiber resonator

Xinxin Suo, Haicheng Yu, Jing Li, and Xudong Wu
Opt. Lett. 45(8) 2227-2230 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription