Abstract

Taking advantage of the high thermal conductivity of graphene, this Letter demonstrates a microelectromechanical (MEM) tunable Fabry–Pérot (F–P) cavity, based on a graphene-bonded fiber device (GFD), which acts as a microheater. By increasing the electric current from 0 to 8 mA in the heater, the temperature of the GFD can rise and approach a value of 760 K theoretically. This high temperature will cause a deformation of the fiber, allowing the graphene-bonded fiber end to form a gap-adjustable F–P cavity with a cleaved single-mode fiber. The gap in the cavity can be reduced by increasing the current applied, leading the transmittance of the cavity to change. In this work, a highly sensitive current sensor (5.9×105nm/A2) and a tunable mode-locked fiber laser (1.2×104nm/A2) are created based on the MEM tunable F–P cavity.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring

Guo-Hsuan Peng, Yu-Chieh Chi, and Gong-Ru Lin
Opt. Express 16(17) 13405-13413 (2008)

Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer for ultra-wideband fiber optic acoustic sensing

Wenjun Ni, Ping Lu, Xin Fu, Wei Zhang, Perry Ping Shum, Handong Sun, Chunyong Yang, Deming Liu, and Jiangshan Zhang
Opt. Express 26(16) 20758-20767 (2018)

Temperature-insensitive refractive index sensing by use of micro Fabry–Pérot cavity based on simplified hollow-core photonic crystal fiber

Ying Wang, D. N. Wang, C. R. Liao, Tianyi Hu, Jiangtao Guo, and Huifeng Wei
Opt. Lett. 38(3) 269-271 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription