Abstract

We demonstrate a synthetic subaperture-based angle-independent Doppler flow calculation, using a line field spectral domain optical coherence tomography system. The high speed of the system features a high phase stability over the volume, which is necessary to apply synthetic subapertures in the aperture plane. Thus, the flow component for each subaperture can be reconstructed in postprocessing. Capillary phantom and in vivo retinal imaging experiments were performed to validate and demonstrate angle-independent Doppler flow calculation.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Angle independent flow assessment with bidirectional Doppler optical coherence tomography

Cedric Blatter, Branislav Grajciar, Leopold Schmetterer, and Rainer A. Leitgeb
Opt. Lett. 38(21) 4433-4436 (2013)

Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes

Veronika Doblhoff-Dier, Leopold Schmetterer, Walthard Vilser, Gerhard Garhöfer, Martin Gröschl, Rainer A. Leitgeb, and René M. Werkmeister
Biomed. Opt. Express 5(2) 630-642 (2014)

In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography

Brian R. White, Mark C. Pierce, Nader Nassif, Barry Cense, B. Hyle Park, Guillermo J. Tearney, Brett E. Bouma, Teresa C. Chen, and Johannes F. de Boer
Opt. Express 11(25) 3490-3497 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription