Abstract

We demonstrate a synthetic subaperture-based angle-independent Doppler flow calculation, using a line field spectral domain optical coherence tomography system. The high speed of the system features a high phase stability over the volume, which is necessary to apply synthetic subapertures in the aperture plane. Thus, the flow component for each subaperture can be reconstructed in postprocessing. Capillary phantom and in vivo retinal imaging experiments were performed to validate and demonstrate angle-independent Doppler flow calculation.

© 2019 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo imaging of retinal hemodynamics with OCT angiography and Doppler OCT

Shenghai Huang, Meixiao Shen, Dexi Zhu, Qi Chen, Ce Shi, Zhongping Chen, and Fan Lu
Biomed. Opt. Express 7(2) 663-676 (2016)

Optical coherence tomography based angiography [Invited]

Chieh-Li Chen and Ruikang K. Wang
Biomed. Opt. Express 8(2) 1056-1082 (2017)

Dove prism based rotating dual beam bidirectional Doppler OCT

Cedric Blatter, Séverine Coquoz, Branislav Grajciar, Amardeep S. G. Singh, Marco Bonesi, René M. Werkmeister, Leopold Schmetterer, and Rainer A. Leitgeb
Biomed. Opt. Express 4(7) 1188-1203 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription