Abstract

A combination of ultrafast emission and transmission spectroscopy is presented that provides a model-independent temperature measurement and tracking of the expansion dynamics for a dense, strongly coupled plasma. For femtosecond laser breakdown of hydrogen gas at 10 bar, we observe a 30,000 K two-component plasma for hundreds of picoseconds where both electrons and protons have a strong coupling parameter value of $\Gamma \sim{0.5}$. Furthermore, the plasma’s degree of ionization (45%) results in a condition where the Debye screening length (6 Å) is less than the interatomic spacing (13 Å). Plasma formation occurs under an isochoric initial condition, which simplifies hydrodynamic modeling of the plasma channel expansion. The channel radius is found to accelerate at a constant rate until the front is moving with the speed of sound. Comparing hydrogen and deuterium for the same breakdown conditions grants unique insight into the hydrodynamics of strongly coupled plasma due to their nearly identical electronic structure yet large mass difference. The ultimate goal of these experiments is to access a plasma regime where continuum mechanics become nonlocal, as compared with the hydrodynamic motion described by the Navier–Stokes equations.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Transient scattering effects and electron plasma dynamics during ultrafast laser ablation of water

Javier Hernandez-Rueda and Dries van Oosten
Opt. Lett. 44(7) 1856-1859 (2019)

Diagnosing plasmas with wideband terahertz pulses

A. Curcio and M. Petrarca
Opt. Lett. 44(4) 1011-1014 (2019)

Ultrafast pH-jump two-dimensional infrared spectroscopy

Jennifer C. Flanagan and Carlos R. Baiz
Opt. Lett. 44(20) 4937-4940 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription