Abstract

Random distributed feedback Raman fiber laser is a new kind of light source that can be applied to generate a high-power laser. In this Letter, we report on a high-power, high-spectral-purity random Raman fiber laser based on tapered fiber, in which the four-wave mixing (FWM) effect has been sufficiently suppressed. By choosing an appropriate tapered fiber length, we achieve a maximum random laser output of 491 W, and the spectral purity can reach to as high as 94%. We carefully compare the influence of different tapered fiber lengths and splicing patterns on the FWM effect by the cutting-back method and lateral-offset splicing. The results show that the transverse modes dispersion is responsible for the appearance of FWM by compensating the phase mismatch. It is believed that a kilowatt-level random laser can be obtained by further optimizing the parameters of tapered fiber.

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quasi-kilowatt random fiber laser

Hanwei Zhang, Long Huang, Jiaxin Song, Han Wu, Pu Zhou, Xiaolin Wang, Jian Wu, Jiangming Xu, Zinan Wang, Xiaojun Xu, and Yunjiang Rao
Opt. Lett. 44(11) 2613-2616 (2019)

High order cascaded Raman random fiber laser with high spectral purity

Jinyan Dong, Lei Zhang, Huawei Jiang, Xuezong Yang, Weiwei Pan, Shuzhen Cui, Xijia Gu, and Yan Feng
Opt. Express 26(5) 5275-5280 (2018)

More than 200  W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber

Jinyan Dong, Lei Zhang, Jiaqi Zhou, Weiwei Pan, Xijia Gu, and Yan Feng
Opt. Lett. 44(7) 1801-1804 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription