Abstract

We present a single-shot quantitative phase imaging (QPI) method based on color-multiplexed Fourier ptychographic microscopy (FPM). Three light-emitting diode (LED) elements with respective R/G/B channels in a programmable LED array illuminate the specimen simultaneously, providing triangle oblique illuminations matching the numerical aperture of the objective precisely. A color image sensor records the light transmitted through the specimen, and three monochromatic intensity images at each color channel are then separated and utilized to recover the phase of the specimen. After one-step deconvolution based on the phase contrast transfer function, the obtained initial phase map is further refined by the FPM-based iterative recovery algorithm to overcome pixel-aliasing and improve the phase recovery accuracy. The high-speed, high-throughput QPI capabilities of the proposed approach are demonstrated by imaging HeLa cells mitosis in vitro, achieving a half-pitch resolution of 388 nm across a wide field of view of 1.33  mm2 at camera-limited frame rates (50 fps).

© 2018 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-exposure quantitative phase imaging in color-coded LED microscopy

Wonchan Lee, Daeseong Jung, Suho Ryu, and Chulmin Joo
Opt. Express 25(7) 8398-8411 (2017)

Color-coded LED microscopy for multi-contrast and quantitative phase-gradient imaging

Donghak Lee, Suho Ryu, Uihan Kim, Daeseong Jung, and Chulmin Joo
Biomed. Opt. Express 6(12) 4912-4922 (2015)

Efficient quantitative phase microscopy using programmable annular LED illumination

Jiaji Li, Qian Chen, Jialin Zhang, Yan Zhang, Linpeng Lu, and Chao Zuo
Biomed. Opt. Express 8(10) 4687-4705 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Prog. Opt. 57, 133 (2012).
    [Crossref]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, Opt. Lett. 24, 291 (1999).
    [Crossref]
  3. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, Opt. Lett. 29, 2399 (2004).
    [Crossref]
  4. A. Barty, K. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998).
    [Crossref]
  5. S. B. Mehta and C. J. Sheppard, Opt. Lett. 34, 1924 (2009).
    [Crossref]
  6. G. Zheng, R. Horstmeyer, and C. Yang, Nat. Photonics 7, 739 (2013).
    [Crossref]
  7. L. Bian, J. Suo, G. Situ, G. Zheng, F. Chen, and Q. Dai, Opt. Lett. 39, 6648 (2014).
    [Crossref]
  8. S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, Biomed. Opt. Express 5, 1757 (2014).
    [Crossref]
  9. L. Tian, X. Li, K. Ramchandran, and L. Waller, Biomed. Opt. Express 5, 2376 (2014).
    [Crossref]
  10. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, Optica 2, 904 (2015).
    [Crossref]
  11. X. He, C. Liu, and J. Zhu, Opt. Lett. 43, 214 (2018).
    [Crossref]
  12. P. Sidorenko and O. Cohen, Optica 3, 9 (2016).
    [Crossref]
  13. J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, Sci. Rep. 8, 7669 (2018).
    [Crossref]
  14. L. Tian and L. Waller, Opt. Express 23, 11394 (2015).
    [Crossref]
  15. J. Sun, Q. Chen, Y. Zhang, and C. Zuo, Opt. Express 24, 15765 (2016).
    [Crossref]
  16. Z. F. Phillips, M. Chen, and L. Waller, PLoS ONE 12, e0171228 (2017).
    [Crossref]
  17. W. Lee, D. Jung, S. Ryu, and C. Joo, Opt. Express 25, 8398 (2017).
    [Crossref]
  18. Y. Wu, Y. Zhang, W. Luo, and A. Ozcan, Sci. Rep. 6, 28601 (2016).
    [Crossref]

2018 (2)

X. He, C. Liu, and J. Zhu, Opt. Lett. 43, 214 (2018).
[Crossref]

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, Sci. Rep. 8, 7669 (2018).
[Crossref]

2017 (2)

Z. F. Phillips, M. Chen, and L. Waller, PLoS ONE 12, e0171228 (2017).
[Crossref]

W. Lee, D. Jung, S. Ryu, and C. Joo, Opt. Express 25, 8398 (2017).
[Crossref]

2016 (3)

2015 (2)

2014 (3)

2013 (1)

G. Zheng, R. Horstmeyer, and C. Yang, Nat. Photonics 7, 739 (2013).
[Crossref]

2012 (1)

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Prog. Opt. 57, 133 (2012).
[Crossref]

2009 (1)

2004 (1)

1999 (1)

1998 (1)

Badizadegan, K.

Barty, A.

Bevilacqua, F.

Bhaduri, B.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Prog. Opt. 57, 133 (2012).
[Crossref]

Bian, L.

Chen, F.

Chen, M.

Z. F. Phillips, M. Chen, and L. Waller, PLoS ONE 12, e0171228 (2017).
[Crossref]

L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, Optica 2, 904 (2015).
[Crossref]

Chen, Q.

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, Sci. Rep. 8, 7669 (2018).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, Opt. Express 24, 15765 (2016).
[Crossref]

Cohen, O.

Cuche, E.

Dai, Q.

Dasari, R. R.

Depeursinge, C.

Dong, S.

Fan, Y.

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, Sci. Rep. 8, 7669 (2018).
[Crossref]

Fang-Yen, C.

Feld, M. S.

He, X.

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, Nat. Photonics 7, 739 (2013).
[Crossref]

Iwai, H.

Joo, C.

Jung, D.

Lee, W.

Li, X.

Liu, C.

Liu, Z.

Luo, W.

Y. Wu, Y. Zhang, W. Luo, and A. Ozcan, Sci. Rep. 6, 28601 (2016).
[Crossref]

Mehta, S. B.

Mir, M.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Prog. Opt. 57, 133 (2012).
[Crossref]

Nanda, P.

Nugent, K.

Ozcan, A.

Y. Wu, Y. Zhang, W. Luo, and A. Ozcan, Sci. Rep. 6, 28601 (2016).
[Crossref]

Paganin, D.

Phillips, Z. F.

Z. F. Phillips, M. Chen, and L. Waller, PLoS ONE 12, e0171228 (2017).
[Crossref]

Popescu, G.

Ramchandran, K.

Roberts, A.

Ryu, S.

Sheppard, C. J.

Shiradkar, R.

Sidorenko, P.

Situ, G.

Sun, J.

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, Sci. Rep. 8, 7669 (2018).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, Opt. Express 24, 15765 (2016).
[Crossref]

Suo, J.

Tian, L.

Waller, L.

Wang, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Prog. Opt. 57, 133 (2012).
[Crossref]

Wax, A.

Wu, Y.

Y. Wu, Y. Zhang, W. Luo, and A. Ozcan, Sci. Rep. 6, 28601 (2016).
[Crossref]

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, Nat. Photonics 7, 739 (2013).
[Crossref]

Yeh, L.-H.

Zhang, J.

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, Sci. Rep. 8, 7669 (2018).
[Crossref]

Zhang, Y.

Y. Wu, Y. Zhang, W. Luo, and A. Ozcan, Sci. Rep. 6, 28601 (2016).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, Opt. Express 24, 15765 (2016).
[Crossref]

Zheng, G.

Zhong, J.

Zhu, J.

Zhu, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Prog. Opt. 57, 133 (2012).
[Crossref]

Zuo, C.

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, Sci. Rep. 8, 7669 (2018).
[Crossref]

J. Sun, Q. Chen, Y. Zhang, and C. Zuo, Opt. Express 24, 15765 (2016).
[Crossref]

Biomed. Opt. Express (2)

Nat. Photonics (1)

G. Zheng, R. Horstmeyer, and C. Yang, Nat. Photonics 7, 739 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Optica (2)

PLoS ONE (1)

Z. F. Phillips, M. Chen, and L. Waller, PLoS ONE 12, e0171228 (2017).
[Crossref]

Prog. Opt. (1)

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Prog. Opt. 57, 133 (2012).
[Crossref]

Sci. Rep. (2)

Y. Wu, Y. Zhang, W. Luo, and A. Ozcan, Sci. Rep. 6, 28601 (2016).
[Crossref]

J. Sun, C. Zuo, J. Zhang, Y. Fan, and Q. Chen, Sci. Rep. 8, 7669 (2018).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Visualization 1. Large SBP phase video of unstained HeLa cells in vitro recovered by using SFPM.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (A1) Simulated ideal pure phase object. (A2), (B1), (B2) PTF, intensity map, and frequency spectrum of a bright-field image under oblique illumination in FPM when NAill=NAobj and the imaging pixel size matches 2NAobj. (C1), (C2) Recovered initial phase map and its frequency spectrum after single-step deconvolution. (D) Phase map obtained from FPM-based iterative algorithm. (E)–(G) Intensity image, initial phase map recovered from interpolation and deconvolution, and final iteratively reconstructed phase image when the imaging pixel size is defined by NAobj. (H) Line profiles illustrating phase retrieval accuracy of deconvolution and FPM-based algorithms when the pixel size matches NAobj.
Fig. 2.
Fig. 2. Color-multiplexed illumination patterns and the flowchart of SFPM technique. (A) SFPM system. (B1), (B2) Color-multiplexed illumination patterns. (C1)–(C2) Captured color images at t1t2. (D1)–(D2) Recovered phase maps corresponding to each color image. (E) Flowchart of SFPM.
Fig. 3.
Fig. 3. Experimental QPI of a pure phase resolution target. (A1) Bright-field full-FOV image of the target under incoherent white-light illumination. (A2) Enlarged view of the black boxed region in (A1). (B) Captured color image when illumination pattern 1 is lit up. (C1), (C2) Recovered phase maps using SFPM without and with iterative refinement. (C3) Recovered phase map with two illumination patterns. (D1), (D2) Line profiles of the recovered pure phase specimen in (C1)–(C3).
Fig. 4.
Fig. 4. Single-shot QPI of HeLa cells in vitro using SFPM with an acquisition time of 0.02 s per frame. (A) One frame of the full-FOV phase reconstruction. (B), (C) Enlarged images of the blue-boxed and red-boxed regions in (A). (D) Sample frames of a reconstructed video (see Visualization 1) for a zoom-in view of blue-boxed regions in (A) at 5–8 min intervals across 40 min.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ij(u)δ(u)+iϕ(u)[P(u+uj)P(uuj)],
PTFj(u)=i[P(u+uj)P(uuj)].
ϕ(u)=j=1N[Ij(u)δ(u)]PTFj*(u)j=1N|PTFj(u)|2,