Abstract

The coupling of surface plasmons and excitons in the emissive layer (EML) can improve the performance of polymer light-emitting diodes (PLEDs). Silver nanoparticles (Ag-NPs) with a decahedron structure are prepared by the chemical reduction and photochemical methods and doped directly into the EML after the phase-transfer process. The surface plasmon resonance effect of Ag-NPs, which makes full use of quenched excitons and increases the efficiency of excitons in the EML in a PLED, enhances the current efficacy by a factor of 75 relative to that of the undoped reference device (from 0.22 to 16.64 cd/A). These results demonstrate that Ag-NPs can assist in simple and low-cost fabrication of high-performance polymer optoelectronic devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic microcavity using photo-reduced silver nanoparticles and light-emitting polymer

Feifei Liu, Xinping Zhang, Xiaohui Fang, and Yuanhai Lin
Opt. Express 24(2) 1747-1757 (2016)

Highly efficient organic light-emitting devices based on multifunctional nanoparticles

Dandan Zhang, Yu Tian, Shijie Zou, Jianxin Tang, and Yanqing Li
Opt. Lett. 44(10) 2462-2465 (2019)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription