Abstract

We report controllable near fields around split-ring resonator (SRR) gaps of an active terahertz metamaterial. As extension of parallel-plate capacitors, patterned VO2 is integrated into the metallic SRRs to manipulate the near-field intensity and hot spot size through its metal-insulator transition. This design enhances the device reliability by preventing VO2 dielectric breakdown at a strongly enhanced near field. The near-field intensity and spot size are tunable in broad ranges, and the device is demonstrated to be capable of compensating resonant frequency drift arisen from different interactions due to near-field coupling. It provides an effective method to actively manipulate the light-matter interaction through the strongly enhanced and tunable near fields.

© 2015 Optical Society of America

Full Article  |  PDF Article
More Like This
Spot-size reduction in terahertz apertureless near-field imaging

P. C. M. Planken and N. C. J. van der Valk
Opt. Lett. 29(19) 2306-2308 (2004)

Electrically controllable extraordinary optical transmission in gold gratings on vanadium dioxide

Junho Jeong, Arash Joushaghani, Suzanne Paradis, David Alain, and Joyce K. S. Poon
Opt. Lett. 40(19) 4408-4411 (2015)

Near-infrared electro-optic modulator based on plasmonic graphene

Susbhan Das, Alessandro Salandrino, Judy Z. Wu, and Rongqing Hui
Opt. Lett. 40(7) 1516-1519 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription