Abstract

We report on a passively mode-locked InP/InGaAsP multiple quantum well semiconductor ring laser that operates at a 20GHz repetition rate and around 1575nm wavelength. The device has been realized using the active–passive integration technology in a standardized photonic integration platform. We demonstrate experimentally for the first time to our knowledge that the relative positioning of the amplifier and absorber in a monolithically integrated ring laser can be used to control the balance of power between counterpropagating fields in the mode-locked state. The directional power balance is verified to be in agreement with a model previously reported.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithically integrated 2.5  GHz extended cavity mode-locked ring laser with intracavity phase modulators

Sylwester Latkowski, Valentina Moskalenko, Saeed Tahvili, Luc Augustin, Meint Smit, Kevin Williams, and Erwin Bente
Opt. Lett. 40(1) 77-80 (2015)

High power (130 mW) 40 GHz 1.55 μm mode-locked distributed Bragg reflector lasers with integrated optical amplifiers

Jehan Akbar, Lianping Hou, Mohsin Haji, Michael J. Strain, John H. Marsh, A. Catrina Bryce, and Anthony E. Kelly
Opt. Lett. 37(3) 344-346 (2012)

Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser

Valentina Moskalenko, Sylwester Latkowski, Saeed Tahvili, Tjibbe de Vries, Meint Smit, and Erwin Bente
Opt. Express 22(23) 28865-28874 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription