Abstract

We propose and theoretically analyze what we believe to be a novel design of cavity-enhanced photodetectors capable of sensing multiple wavelengths simultaneously in a single pixel. The design is based on phase-tuned propagation of resonant modes in cascaded planar resonant cavities. We show that this concept can be generalized to detect multiple wavelength combinations covering the entire near to far infrared spectrum. Besides its multispectral detection capability, the design also features minimal spectral cross talk and significantly suppressed noise. The intrinsic design versatility and scalability, as well as process compatibility with planar microfabrication, suggest the design’s wide application potential for telecommunications, infrared imaging, and biochemical sensing.

© 2010 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Resonant-cavity-enhanced mid-infrared photodetector on a silicon platform

Jianfei Wang, Juejun Hu, Piotr Becla, Anuradha M. Agarwal, and Lionel C. Kimerling
Opt. Express 18(12) 12890-12896 (2010)

GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms

Bo-Jun Huang, Jun-Han Lin, H. H. Cheng, and Guo-En Chang
Opt. Lett. 43(6) 1215-1218 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription