Abstract
A new technique for achieving efficient Čerenkov-type second-harmonic generation (SHG) in a nonlinear-optical (NLO) polymer waveguide is presented. The configuration, which can prevent the losses of light caused by relatively long-distance propagation and the multiple reflections that appear in the conventional Čerenkov technique, exhibits ease of fabrication and compactness. We experimentally observed a conversion efficiency of , which to our knowledge is the highest value reported for Čerenkov SHG in polymer, by tuning both the thickness and the refractive index of the polymer film close to phase matching between a guided fundamental wave and a guided harmonic wave. The experimental results agreed well with the theoretical prediction.
© 2005 Optical Society of America
Full Article |
PDF Article
More Like This
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Tables (1)
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (1)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription