Abstract

We report an experimental demonstration of a heterodyne polarization rotation measurement with a noise floor 4.8 dB below the optical shot noise by use of classically phase-locked quantum twin beams emitted above threshold by an ultrastable type II Na:KTP cw optical parametric oscillator. We believe that this is the largest noise reduction achieved to date in optical phase-difference measurements.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Sub-shot-noise high-sensitivity spectroscopy with optical parametric oscillator twin beams

P. H. Souto Ribeiro, C. Schwob, A. Maître, and C. Fabre
Opt. Lett. 22(24) 1893-1895 (1997)

Sub-shot-noise phase quadrature measurement of intense light beams

O. Glöckl, U. L. Andersen, S. Lorenz, Ch. Silberhorn, N. Korolkova, and G. Leuchs
Opt. Lett. 29(16) 1936-1938 (2004)

Generation of twin beams from an optical parametric oscillator pumped by a frequency-doubled diode laser

Kazuhiro Hayasaka, Yun Zhang, and Katsuyuki Kasai
Opt. Lett. 29(14) 1665-1667 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription