Abstract

Frequency-resolved optical gating is used to characterize the propagation of intense femtosecond pulses in a nonlinear, dispersive medium. The combined effects of diffraction, normal dispersion, and cubic nonlinearity lead to pulse splitting. The role of the phase of the input pulse is studied. The results are compared with the predictions of a three-dimensional nonlinear Schrödinger equation.

© 1998 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization instability of femtosecond pulse splitting in normally dispersive self-focusing media

J. Schjødt-Eriksen, J. V. Moloney, E. M. Wright, Q. Feng, and P. L. Christiansen
Opt. Lett. 26(2) 78-80 (2001)

Complete pulse characterization at 1.5 µm by cross-phase modulation in optical fibers

M. D. Thomson, J. M. Dudley, L. P. Barry, and J. D. Harvey
Opt. Lett. 23(20) 1582-1584 (1998)

Amplitude and phase characterization of 4.5-fs pulses by frequency-resolved optical gating

Andrius Baltuška, Maxim S. Pshenichnikov, and Douwe A. Wiersma
Opt. Lett. 23(18) 1474-1476 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription