Abstract

Amplified spontaneous emission noise generates fluctuations in soliton energy and therefore fluctuations in the Raman self-frequency shift and in the group velocity. The corresponding timing jitter is found to be the main limitation for communication distances less than 1500 km.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Suppression of the Gordon–Haus noise by a modulated Raman pump

Shiva Kumar and Akira Hasegawa
Opt. Lett. 20(18) 1856-1858 (1995)

Ultrahigh-bit-rate soliton communication systems using dispersion-decreasing fibers and parametric amplifiers

René-Jean Essiambre and Govind P. Agrawal
Opt. Lett. 21(2) 116-118 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription