Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Argand-plane vorticity singularities in complex scalar optical fields: An experimental study using optical speckle

Open Access Open Access

Abstract

The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as “vorticity singularities” that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.

© 2014 Optical Society of America

1. Introduction

The Cornu spiral is, in essence, the mapping to the Argand plane of the optical field over a plane perpendicular to the optical axis, which results when monochromatic complex scalar plane waves are normally incident upon an infinite edge. This is illustrated in Fig. 1(a), which plots the Argand-plane image of the complex optical field

Ψ(s)=C(s)+iS(s)
where [1, sec. 8.7.3]
C=b{[12+𝒞(s)][12+𝒮(s)]}
S=b{[12+𝒞(s)]+[12+𝒮(s)]}
resulting from diffraction of a plane wave by an infinite opaque edge. Here, 𝒞(s) and 𝒮(s) denote the Fresnel integrals, b is a constant and s is a variable and both depend on the position of the point of observation. Adopting the perspective of Keller’s geometrical theory of diffraction [2], (i) the bottom-left lobe of the spiral in Fig. 1(a) corresponds to the phasor associated with cylindrical waves scattered from the diffracting edge into the region of geometrical shadow; while (ii) the top right lobe results from the coherent superposition of the incident plane wave phasor with the scattered cylindrical edge wave.

 figure: Fig. 1

Fig. 1 (a) A Cornu spiral generated by taking the Argand-plane image of the complex field resulting when a plane wave diffracts from an infinite opaque edge upon which it is incident. (b) From Morgan et al. [3], the simulated Argand-plane plot for coherent x-ray scalar waves diffracted by a uniform infinitely-long dielectric cylinder. One lobe of the Cornu spiral evolves into a hypocycloid in the geometrical shadow of the cylinder. The dotted circle corresponds to the unscattered plane-wave and has an intensity of 1.

Download Full Size | PDF

The Cornu spiral can be generalized. Morgan et al. [3] found that in the geometrical shadow of an infinitely long uniform dielectric cylinder normally illuminated by monochromatic scalar plane waves, the Cornu spiral turns into a hypocycloid (see Fig. 1(b) [3]) as a result of the distorted plane wave (having travelled through the cylinder) superposing with the wave diffracting from the edge of the cylinder. Morgan et al. also found that the magnitudes of the oscillation of the Cornu spiral and the hypocycloid decrease with propagation distance, and wrote down approximate analytical expressions for these fields using the geometric theory of diffraction.

In Rothschild et al. [4], we considered the role of the Argand plane as a means to add insight into vortex behaviour in a complex scalar two-dimensional wavefield. We simulated a vortex-laden speckle field by spatially filtering two-dimensional complex white noise. Note that, in passing from complex fields that vary in only one of the two transverse dimensions to those that vary in both transverse dimensions, the associated Argand-plane map evolves from a line trace (generalized Cornu spiral) into a fully two-dimensional mapping. The appearance of this mapping is typically reminiscent of the caustic-network pattern seen at the bottom of a swimming pool on a bright day. In particular, for such maps we looked at the connection between Argand-plane singularities and quantized phase vortices in the physical field. We described the role of vortices and vorticity in the appearance of singularities of the mapping of the complex wavefunction to the Argand plane – namely, the cusp and the fold vorticity singularities. Note that we previously referred to these singularities as “Argand-plane caustics” [4]. However, following advice from Sir M.V. Berry in a private communication to the corresponding author, we herein use the term “vorticity singularities” in recognition of the fact that Argand-plane singularities are not associated with gradient maps and do not correspond to caustics, or a focussing of rays in real space.

In the present paper we experimentally verify the numerical predictions made in Rothschild et al. [4] by calculating Argand mappings of coherent two-dimensional complex scalar wave-functions associated with optical speckle fields. We generate such a speckle field by experimentally recreating the process used for simulations in Rothschild et al. [4]. Additionally, we use the Taylor series expansion of the complex wavefunction to present a local means to locate Argand-plane singularities of any order. Vortices in speckle fields have been studied previously (see e.g. [5]) and similar experimental and data smoothing techniques to those adopted here have been used by O’Holleran et al. [6]. However, the present work considers the detailed structure of vortices and relates it to the seminal work on “Optical currents” by Berry [7]. We also provide an experimental verification of aspects of the work laid down by Berry [7].

We close this introduction with an outline of the remainder of the paper. Section 2 details the theory of Argand-plane vorticity singularities. Section 3 provides a description of the experimental set-up and execution whereby an optical phase-stepping interferometer is used to measure Argand-plane maps of coherent vortical speckle. Section 4 reports on the results of the experiment and the methods used to analyse the data. Using the results, we confirm our predictions regarding Argand-plane singularities, shown in Sec. 5. We provide a discussion in Sec. 6, and conclude with Sec. 7.

2. Theory of Argand-plane vorticity singularities

An arbitrary two-dimensional differentiable continuous single-valued complex function Ψ(x, y) induces a mapping : ℝ2 → ℂ from two-dimensional real space to the Argand plane, given by

(Ψ(x,y)){ΨR,ΨI}.
Here, ΨR and ΨI denote the real and imaginary parts of Ψ(x, y), which is the boundary value of the spatial part of a forward-propagating monochromatic scalar three-dimensional wave-field over a given planar surface [8]. In this paper, coherent scalar fields are assumed and harmonic time dependence is suppressed.

Figure 2 shows the Argand mapping of a complex number Ψ(x, y) that is associated with a single Cartesian co-ordinate (x, y) in real space to a point on the Argand plane. The set of all such image points for a given Ψ(x, y) may be viewed as a two-dimensional generalization of the Cornu spiral. This generalization forms the core subject of this paper.

 figure: Fig. 2

Fig. 2 The Argand mapping of a complex number Ψ(x, y) for a given point (x, y). The axis in the Argand plane are parameterized by ΨR and ΨI. The magnitude and phase of the wavefunction Ψ(x, y) are represented by |Ψ| and ϕ, respectively.

Download Full Size | PDF

Before proceeding, we recall that Ψ(x, y) is only defined up to a global phase factor exp(0), where ψ0 is any real number. This freedom, which for time-independent field equations typically arises from the invariance of the said equations with respect to the origin of time, implies that the Argand plane image corresponding to Eq. 4 may only be meaningfully defined modulo an arbitrary rigid rotation about the Argand plane origin. Global phase factors may also be introduced into a two-dimensional complex wavefunction, by, for example. passing the wave through a thin sheet of non-absorbing glass. Such global phase factors effect a rigid Argand-plane rotation, which amounts to a re-coordinatization of the Argand plane, they do not alter the conclusions drawn below.

To locate the singularities induced by the mapping corresponding to a specified small patch of (x, y) space, we can perform a jet [9] operation, taking the complex wavefunction Ψ(x, y) and producing a low-order Taylor polynomial at every point of its domain. Truncating at second order about a given fixed point (xp, yp), we have

Ψ(x,y)=A+Bx+Cy+Dxy+Ex2+Fy2,
where AA(xp, yp), BB(xp, yp),..., FF(xp, yp) ∈ ℂ. The Jacobian determinant (“Jacobian”) of the mapping to the Argand plane associated with Ψ(x, y) is given by
J(x,y)=|xΨRyΨRxΨIyΨI|=(BR+DRY+2ERx)(CI+DIx+2FIy)(CR+DRx+2fRy)(BI+DIy+2EIx),
which is quadratic in x and y for the Taylor expansion to second order, and, when set to zero, provides the location of singularities in the Argand plane for an arbitrary second-order wave-function. Therefore for a patch of space centered about (xp, yp) that is sufficiently small for Eq. (5) to be a good approximation, the locus of points for which J = 0 corresponds to a conic section in (x, y) space, that is, a parabola, hyperbola, ellipse or straight line. The Argand-plane image of this locus of points will then correspond to the associated Argand-plane singularity. These conic sections will evolve into more general curves if the Taylor expansion in Eq. (5) is taken to higher than second order, although we note that the method of analysis presented here is readily generalized to such a case.

The Jacobian determinant of at a point (x, y) provides important information about the transformation of Ψ(x, y) under the mapping from an infinitesimal two-dimensional patch enclosing this point. The absolute value of the Jacobian J at some point (xp, yp) gives the factor by which Ψ expands or contract infinitesimal patches at p upon being mapped from real space to the Argand plane, while the sign of J indicates whether the patch has been flipped (J < 0) or not (J > 0). A value of J = 0 indicates that a patch of space in the xy plane has collapsed into a single point and an Argand-plane singularity has formed for (Ψ(x, y)).

We can assign a physical meaning to the Jacobian. The vorticity Ω of a three-dimensional complex scalar field Ψ(x, y, z) can be expressed as [10]

Ω=×j=Im(Ψ*×Ψ)=ΨR×ΨI,
where ∇ is the gradient operator and j= ImΨ*∇Ψ is the current up to a multiplicative constant which is set to unity here. The vorticity gives the amount of local rotation in the field. The z-component of the local vorticity,
Ωz=ΨRxΨIyΨIxΨRy,
represents the local current rotation at (x, y) and is equivalent to the Jacobian, as seen from Eq. 6. When the local current rotation of the field changes from clockwise to anti-clockwise, that is, where Ωz = 0, a singularity will be induced by . This fact arises from the continuity of the vorticity, i.e. if Ωz changes sign as one traverses a given path then the vorticity must vanish for at least one point along the path. As with the Jacobian, points where the vorticity are equal to zero will map to Argand-plane singularities under .

The vorticity Ω should not be confused with the local orbital angular momentum density L = r×j. The longitudinal orbital angular momentum density is given by

Lz=Im[Ψ*(xyΨyxΨ)].

Note the distinction between the local current rotation referred to above, and the quantized phase vortices associated with screw-type singularities which are a regular feature of complex scalar functions such as Ψ(x, y). Such phase vortices are characterized by the vanishing of the real and imaginary part of the wave function at the core of the vortex with a change of phase by an integer multiple of 2π around it. These structures yield interesting features in the Argand plane. For detailed descriptions of optical vortices, see e.g. the seminal works of [11, 12]. Modulo a continuous deformation, a phase vortex at (x0, y0) can be locally given by

Ψ±=(xx0)±i(yy0),
where an infinitesimal patch at (x0, y0) maps under to cover the Argand-plane origin, at which point Re(Ψ) = Im(Ψ) = 0. Ψ+ denotes a vortex (anti-clockwise phase winding) and Ψ an anti vortex (clockwise phase winding). In Ψ+, the infinitesimal patch in xy space maps directly onto the Argand-plane origin; in Ψ it must be “flipped” in order to cover the Argand-plane origin with the correct orientation. Thus, when there are two vortices of opposite helicity within a simply-connected region in the field of Ψ(x, y), the patches of space will map to the Argand plane origin with one patch being flipped relative to the other, implying the presence of an Argand singularity such as a fold that is induced under the mapping of the region. The continuity of Ψ(x, y) yields a many-to-one mapping where the fold occurs, thus implying the presence of a singularity. This is an example wherein a function can be transformed under to bring about Argand-plane singularities, that, in this case, are intimately connected to the presence of vortices of opposite helicity in Ψ(x, y) (see [4] for more detail).

Returning to the main thread of the argument, we can exemplify Eqn. 6 by taking the special case of a second-order complex polynomial, given by

Ψ(x,y)=A+x+iy+xy+i2(x2y2),A
for which the Jacobian of vanishes on the unit circle:
J(x,y)=1x2y2=0.
To determine the Argand-plane image of the unit circle, under the Argand-plane map which is induced by the wavefunction given in Eq. 11, let us parameterize the unit circle via θ ∈ [0, 2π), as
{x(θ)=cosθ,y(θ)=sinθ,0θ2π.

Now we can write the Argand-plane coordinates from Eqns. 11 and 13 as

{ΨR(θ)=AR+cosθ+12sin2θ,ΨI(θ)=AI+sinθ+12cos2θ,A,θ[0,2π].
Visual representations of the magnitude |Ψ|, phase ψ, current vorticity |Ωz| and orbital angular momentum |Lz| associated with Eqn. 11 are shown in Fig. 3. A plot of ΨR against ΨI as defined by Eq. 14 is shown in Fig. 3(e) and takes the form of the cross-section of an elliptic umbilic catastrophe [13]. The zeros of |Ωz| and |Lz| have no direct association with one another, as predicted by Berry [7].

 figure: Fig. 3

Fig. 3 Various visualizations of Ψ(x, y) in Eqn. 11 evaluated over −2 ≤ x, yz. (a) |Ψ|; (b) phase ϕ; (c) a plot of |Ωz|, which falls to zero over a unit circle, as predicted by Eqn. 12; (d) a plot of |Lz| and (e), the parametric plot of Eqn. 14, which is the image of Ψ(x, y) in the Argand plane and takes the form of the cross-section of an elliptic umbilic catastrophe [13].

Download Full Size | PDF

In the following sections, we will show that Argand mappings containing vorticity singularities can be observed experimentally using an optical speckle field.

We close this theory section with an idea raised by one of the anonymous referees of this paper. Consider a simply-connected two-dimensional region, over which the continuous complex single-valued scalar field Ψ(x, y) is defined. Assume also that the field does not vanish at any point on the boundary, which in turn implies that the phase ϕ(x, y) = ArgΨ(x, y) is defined at each point of the boundary. Assume that any phase vortices within the boundary will have topological charges that have a magnitude of unity, which is typically a good assumption for generic fields on account of the instability of higher-order vortices. Knowledge of the phase over the boundary will then allow one to determine the net topological charge of the field, namely Q = N(+) − N(−), where N(+) and N(−) are the number of positive and negative unit charges, respectively. Also, as pointed out in Ref. [4], the number of Argand-plane sheets covering the Argand origin (cf. Fig. 8) is equal to the total number N = N(+) + N(−) of vortices. Thus knowledge of both Q and N allows N(+) = (N + Q)/2 and N(−) = (NQ)/2 to be independently measured without needing to located each vortex individually or needing to determine the topological charge of each such vortex.

3. Experimental method

In Rothschild et al. [4], we computationally generated vortices using the spatial filtering of two-dimensional complex white noise. The Fourier transform of resulting wavefield was truncated using a low-pass filter, resulting in a speckle field once an inverse two-dimensional Fourier transform was applied. The cutoff of the low-pass filter was used to control the size of the speckle.

This process can be achieved in an experiment using a coherent laser, a ground glass screen, a circular iris and a lens, among other apparatus. A schematic of the experiment is shown in Fig. 4.

 figure: Fig. 4

Fig. 4 Schematic of apparatus for creating and identifying optical vortices. The apparatus is a form of Mach-Zehnder interferometer and the waveplates allow the recording of interferograms using a CCD camera with different phase shifts of the reference beam, for analysis using phase-step interferometery. Optical vortices are created by the speckle interference from the ground glass screen and the distribution of vortices is controlled by the size of the downstream iris.

Download Full Size | PDF

The output of a linearly-polarised Helium-Neon laser (Thorlabs, 5 mW) was passed through a neutral density filter, and was then spatially filtered by an f = 18.4 mm aspheric lens, and a 20 μm pinhole located at the focus, followed by an iris downstream set to pass only the zero-order central maxima. The filtered beam was collimated by an f = 100 mm plano-convex lens to give a planar, near-Gaussian beam of approximately 6 mm diameter. The collimated beam passed through a polarising beamsplitter cube to ensure that the beam used in the experiment had pure vertical polarisation. The neutral density filter attenuated the beam to eliminate saturation of the camera.

A random phase field containing optical vortices was created by passing the expanded planar laser beam through a random phase plate, composed of a fine ground glass plate from a film-camera viewing screen. An iris (aperture set to approximately 0.8 mm) immediately after the screen limited the aperture for the system and determined the characteristic size of the speckle interference pattern that propagated towards the CCD camera (Prosilica GE1650).

A plano-convex lens (f = 300 mm) located one focal length away from both the iris and the camera ensured that the Fourier transform of the speckle pattern was recorded on the camera. This corresponded to the far-field (Fraunhofer) diffraction of the speckle field present at the iris.

In order to plot the data in the Argand plane, it was necessary to recover the phase information. This was done using phase stepping interferometry [14]. The algorithm we used requires that four separate interferograms are recorded. As shown in Fig. 4, a reference beam was split from the laser beam before it encountered the glass screen, which was then passed through a λ/4 and a λ/2 waveplate before being recombined with the random phase field on the camera. Each beam traversed an equal length to the camera and the optical configuration was that of a Mach-Zehnder interferometer. A neutral density filter (OD 1) attenuated the beam intensity to match the intensity of the beam containing the optical vortices. Rotating the waveplates to change the alignment of the optical axis of a waveplate from the slow axis to the fast axis with respect to the beam polarisation introduced the characteristic phase shift retardance of the wave-plate without introducing additional phase variations that would be associated with removing the waveplate. Using a combination of waveplate retardances, a 90° optical phase shift was introduced into the reference beam between each sequentially recorded interferogram. These interferograms corresponded to the reference beam being retarded by 0°, 90°, 180° and 270°. The phase ϕ(x, y) was calculated using

ϕ(x,y)=tan1[I4I2I1I3],
where Ii is the intensity of the interferogram recorded for phase retardances δi = 0, π/2, π, 3π/2, where i = 1, 2, 3, 4 [14].

4. Results

The results of the experiment for the reconstructed intensity and phase are shown in Fig. 5. The region of interest (ROI) is outlined by a white broken rectangle and enlarged for both intensity and phase in Fig. 5. This selection lies near the local minimum of the gentle background curvature in the phase, on the order of 10 wavelength per millimetre. Additionally, the size of the ROI is small enough to allow us to clearly see features in the Argand plane. We note the presence of interference fringes in several areas of the ROI, evident as ripples in the phase and intensity, and are due to unwanted scattering by optical elements.

 figure: Fig. 5

Fig. 5 (a) The intensity and (b) the phase, which were reconstructed using a phase-stepping method applied to the speckle field created by the apparatus in Fig. 4. The broken rectangles indicate the ROI. These areas are enlarged to reveal a greater level of detail.

Download Full Size | PDF

The Argand-plane mapping of the data in Fig. 5 is shown in Fig. 6. It is difficult to see any of the behaviour described in Sec. 2, in particular that of vorticity singularities, due to an overlying high frequency ripple. These Argand-plane ripples are due to the high frequency interference fringes noted in Fig. 5.

 figure: Fig. 6

Fig. 6 The Argand-plane mapping of the ROI of the data shown in Fig. 5. The mapping is polluted by a high frequency ripple, an example of which is enlarged.

Download Full Size | PDF

To clean up the Argand image of the data and reveal the underlying vorticity singularities, a Gaussian (Fourier) filter was applied at the level of the complex field. This strategy was necessary because one can not directly smooth the branch cuts in the multi-valued phase map. The process is shown in Fig. 7. Looking at the power spectrum in Fig. 7(a), there is a diagonal streaking effect at medium to high spatial frequencies. This is unrelated to the vertical and horizontal cross-shaped streaking, which is due to truncating to a rectangular region of interest. In order to achieve smoother results, we can apodise the power spectrum by a Fourier-space Gaussian filter (Fig. 7(b)) that is small enough to exclude any unwanted features.

 figure: Fig. 7

Fig. 7 The application of Fourier-space Gaussian filter to smooth the data in Fig. 5 and eliminate the caustic ripple in Fig. 6 so that the underlying structure of the Argand-mapping of the data can be revealed. (a) The power spectrum of the data in Fig. 5, as a function of the spatial frequencies (kx, ky) dual to (x, y). The diagonal streaking originates from parasitic scattering. This is related to the ripple behaviour seen in Fig. 6; (b) The Fourier-space Gaussian filter and (c) the result of the application of the Gaussian filter on the power spectrum, from where the diagonal streaking has been removed.

Download Full Size | PDF

Upon smoothing the data, a cubic interpolation was performed to increase the density of points in the ROI by a multiple of 15. Due to the smoothing and interpolation, the interference fringes that were visible in Fig. 5 are not present and the sampling has become finer. The final result is shown in Fig. 8.

Figures 8(c) and 8(d) show the orbital angular momentum density and vorticity calculated corresponding to the indicated region of data, respectively. The position of the vortices in these images is consistent with the work of Berry in his seminal Optical Currents work [7], in which he stated that the location of vortex cores has no special relationship to the vorticity of a wave-field. This is indeed the case in Fig. 8(c). Figure 8(d) shows that each of the vortex cores coincide with a zero in the orbital angular momentum, consistent with the prediction by Berry [7].

5. Analysis

Vorticity singularities were distinguished in the Argand plane and linked to particular behaviours in the wave field. The Jacobian determinant was calculated to obtain a visual indication of the phase winding behavior. Figure 9(a) shows the phase of the first frame of data. The black lines are the regions where the magnitude of the Jacobian is sufficiently close to zero, |J| < ε = 0.5 × 10−7. As explained in Sec. 2, the regions where J = 0 possess a twofold meaning: That a patch of space has induced a many-to-one mapping under , forming an Argand-plane singularity and that a region of zero vorticity exists there. We previously predicted that a region of the wave field containing vortices of opposite helicity must fold at least once under so that each vortex covers the Argand-plane origin, inducing a fold singularity. The red loop in Fig. 9(a) contains a vortex and an anti-vortex separated by a single “zero Jacobian line”. Therefore we expected that the patch of space will fold once, inducing a fold singularity under . Indeed, in Fig. 9(c), the Argand image of the area enclosed by the red loop, confirms this. The green loop encloses two vortices of the same helicity. This would imply that the patch of space that contains these does not have to fold under as both vortices must map to the Argand plane origin in the same orientation. Indeed, the corresponding Argand image, shown in Fig. 9(d) does not contain a fold. Rather the patch of space covers the origin for the first vortex and then loops around so that the other vortex covers the origin. Hence we have two patches covering the origin, corresponding to two vortices, however, no singularity has been induced as the direction of the phase winding did not change over the area enclosed by the arrow loop. Finally, the blue loop in Fig. 9(a) also contains two vortices of the same helicity. Here, though, there are two Jacobian lines separating the two vortices. According to Rothschild et al. [4], this means the enclosed space must induce two singularities under . Figure 9(e) indeed contains two singularities – a fold and a cusp – corresponding to instances where the patch of space folded and then twisted around again, mapping both vortices over the Argand plane origin at the same orientation. Thus the cusp singularity is the result of a “twist” in the Argand plane origin, induced by a change in the direction of the phase winding.

 figure: Fig. 8

Fig. 8 The result of applying the Gaussian filter of Fig. 7 and expanding the density of points in the region of interest by a multiple of 15 using cubic interpolation. The intensity (a) and phase (b) appear smoother. Minimum values are represented by black, maximum by white. Several features are indicated in the phase: A vortex α, antivortex β and branch cut γ. The vorticity Ω and angular momentum L are also calculated. |Ωz| < 0.5 × 10−7 is shown in (c) and |Lz| < 0.035 is shown in (d). The locations of vortices are indicated by circles: dark fill for vortices and light fill for antivortices. The field-of-view measures 1.48 mm×1.11 mm. The Argand mapping is shown in e), now with much finer sampling, allowing a clear image of vorticity singularities.

Download Full Size | PDF

 figure: Fig. 9

Fig. 9 (a) The zeroes (|Ωz| < 0.5 × 10−7) of the vorticity, calculated by evaluating the Jacobian of the mapping , as seen in Fig. 8(a). The image measures 1.48 mm×1.11 mm. The locations of vortices and anti-vortices are indicated by filled and unfilled circles, respectively. The regions where the Jacobian is sufficiently close to zero are mapped to the Argand plane (b) to reveal an image containing singularities only. A vortex-antivortex dipole separated by one ‘Jacobian line’ is indicated by the red loop in a) and mapped to the Argand plane in (c) to form a fold caustic. Two antivortices that are not separated by any Jacobian lines are indicated by the green loop and mapped to the Argand plane in (d) to reveal a patch of space that loops around but does not fold. Two vortices separated by two Jacobian lines are indicated by the blue loop and are mapped to the Argand plane in (e) to reveal a fold caustic and a cusp.

Download Full Size | PDF

It is easy to see from these examples that, with an understanding of both the vortex distribution and phase winding behaviour of the wave field, the presence of vorticity singularities is a natural result of inducing a mapping in a complex scalar function.

There are other, higher order, vorticity singularities that can be observed in the Argand plane. Figure 10(c) shows an image of a vorticity singularity that resembles the cross section of the elliptic umbilic catastrophe. This was induced by the mapping of a “Jacobian ellipse”, shown in Fig. 10(a). This feature was spotted in data that was obtained by transversely shifting the ground glass screen (see Fig. 4) 10 μm from its initial position. The zeros of the angular momentum of this data are shown in Fig. 10(b) and display no direct association with the zeros of the vorticity. This is all consistent with our simulation of the Jacobian ellipse and elliptic umbilic catastrophe in Fig. 3.

 figure: Fig. 10

Fig. 10 These data were obtained by shifting the ground glass screen by 10 μm. The region of study measures 1.48 mm×1.11 mm. (a) The zeros of its vorticity, where a “Jacobian ellipse” is indicated by a rectangular loop; (b) the zeroes of the orbital angular momentum, where the area that enclosed the Jacobian ellipse in (a) is shown to be lacking in any equally interesting features of the angular momentum and (c) a vorticity singularity closely resembling the cross-section of an elliptic umbilic catastrophe, induced by the mapping of the Jacobian ellipse to the Argand plane.

Download Full Size | PDF

We close this Analysis by giving an experimental demonstration of the method outlined in the final paragraph of Sec. 2, which gives a means to determine the total number N(+) of vortices and N(−) of anti-vortices in a simply-connected two-dimensional region, given (i) the knowledge of the phase at each point of the boundary of the region, and (ii) the associated Argand-plane map, under the assumption that (iii) all vortices have topological charges of magnitude unity. By counting the number of black-white and white-black phase wraps along the boundaries of the red loop in Fig. 9(a) one can determine that the net topological charge of the phase map within the loop is Q = 0, while zooming in on the Argand-plane origin of the field enclosed in the red loop, shown in Fig. 9(c), shows that there are N = 2 sheets covering the Argand plane origin. Since Q = N(+) − N(−) = 0 and N = N(+) + N(−) = 2, we calculate that there are N(+) = (N + Q)/2 = 1 vortex and N(−) = (NQ)/2 = 1 anti-vortex, which is consistent with the number of black dots (vortices) and the number of white dots (anti-vortices) enclosed in the red loop in Fig. 9(a). The same method can be shown to derive the number of vortices in the blue and green loops in Fig. 9(a). This example shows that the number of vortices, together with the number of anti-vortices, may be determined without needing to locate each individual vortex and anti-vortex.

6. Discussion

Our study of the Argand plane provides a useful complementary method for analysing optical fields. In fact, this device could be used for the study of any complex scalar function, not just optical. Already, the discovery of vorticity singularities that are induced by such a mapping to the Argand plane, and our study of them, has provided us with additional insight into the behaviour of our wavefield. For example, we note the connection between the orbital angular momentum density and vorticity and the significance of vortex locations.

The role of the Argand plane in the analysis of optical fields is an interesting one, and we intend to continue our investigations into its usefulness. An immediate extension of this work is to continue to catalogue vorticity singularities, associating each one with a solution for J = 0, as done for the elliptic umbilic in Sec. 2. Other vortical fields such as the focal volumes of aberrated lenses [1517] and turbulent Bose-Einstein condensates (see [1820], for instance) and their resulting Argand images under could help clarify the connection between phase vortices and vorticity singularities. Berry [7] established that vorticity in an optical field is not associated with the location of vortex cores. It is interesting that we have shown that vorticity singularities are a manifestation of vorticity and are strongly influenced by the location of vortex cores. Further study, such as the extensions described above, could add insight into the work already laid down by Berry.

Further, one could study critical point explosions (see [21]) of high order vortices, and the evolution of its image under as an interesting insight into the so-called “vortex-vorticity” duality. Studying the “unfolding” of vorticity singularities with certain parameter changes such as propagation distance or aperture size may also provides insights into the meaning of vorticity singularities.

The investigation into two-dimensional Argand maps is a generalisation of the Cornu spiral mentioned in Sec. 1. We can further generalise Argand maps by looking at vector fields and other multicomponent fields. For example, arbitrary spin matter waves, with spin s, will be described by 2s + 1 complex wave-functions. The mapping of spinor fields to the Bloch, or Poincaré, sphere may possess vorticity singularities. As a generalisation of the two-dimensional complex scalar function, we could look at coherence functions – which are two-point correlation functions and can exist in seven dimensions. In this case, “coherence vortices” become manifest (corresponsing to a pair of points in three–dimensional space, together with a time lag or angular frequency [2224]). The circulating coherence current (see [25]) associated with a coherence vortex is analogous to the current in a complex scalar wavefield. This begs the question: Can the two-point correlation function associated with a partially coherent field littered with coherence vortices induce a mapping to the Argand plane to reveal coherence-current vorticity singularities? If so, what can we learn about the coherence current, and, finally, what is the physical meaning and practical utility of such a construction?

7. Conclusion

We have presented the Argand plane as an interesting tool for the analysis of optical fields. We have verified the existence of vorticity singularities via an experiment involving the spatial filtering of two-dimensional white noise. We have observed the fold, cusp and elliptic umbilic singularities, and showed them to be consistent with theory. The locations of the zeros of the vorticity and orbital angular momentum density of the field were determined and we observed that their association with the location of vortex cores is consistent with the work of Berry [7]. Finally, we have used the second-order Taylor series expansion of the complex wavefunction to locate vorticity singularities induced by a mapping to the Argand plane. Possible extensions of this work could involve critical point explosions, vector and other multi–component fields and coherence functions.

Acknowledgments

FR thanks Professor Sir Michael Berry for his interest in the concepts discussed in this paper and for interesting discussions. FR also acknowledges funding from the Monash University Faculty of Science Dean’s Scholarship scheme. DMP and MJK acknowledge financial support from the Australian Research Council. MJK is an Australian Research Fellow. All authors acknowledge the very useful comments of the referees of this paper, in particular for putting forward the method given in the final paragraph of both Sec. 2 and Sec. 5 of the manuscript.

References and links

1. M. Born and E. Wolf, Principles of Optics, 7 (Cambridge University, 1999). [CrossRef]  

2. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116–130 (1962). [CrossRef]   [PubMed]  

3. K. S. Morgan, K. K. W. Siu, and D. M. Paganin, “The projection approximation and edge contrast for x-ray propagation-based phase contrast imaging of a cylindrical edge,” Opt. Express 18, 9865–9878 (2010). [CrossRef]   [PubMed]  

4. F. Rothschild, M. J. Kitchen, H. M. L. Faulkner, and D. M. Paganin, “Duality between phase vortices and Argand-plane caustics,” Opt. Commun. 285, 4141–4151 (2012). [CrossRef]  

5. K. O’Holleran, M. R. Dennis, F. Flossman, and M. J. Padgett, “Fractality of light’s darkness,” Phys. Rev. Lett. 100, 053902 (2008). [CrossRef]  

6. K. O’Holleran, F. Flossman, M. R. Dennis, and M. J. Padgett, “Methodology for imaging the 3D structure of singularities in scalar and vector optical fields,” J. Opt. A Pure Appl. Opt. 11, 094020 (2009). [CrossRef]  

7. M. V. Berry, “Optical currents,” J. Opt. A Pure Appl. Opt. 11, 094001 (2009). [CrossRef]  

8. H. S. Green and E. Wolf, “A scalar representation of electromagnetic fields,” Proc. Phys. Soc. A 66, 1129–1137 (1953). [CrossRef]  

9. I. Kolar, J. Slovak, and P. W. Michor, Natural Operations in Differential Geometry (Springer, 1993). [CrossRef]  

10. M. V. Berry and M. R. Dennis, “Topological events on wave dislocation lines: Birth and death of loops, and reconnection,” J. Phys. A Math. Theor. 40, 65–74 (2007). [CrossRef]  

11. M. R. Dennis, K. O’Holleran, and M. J. Padgett, “Singular optics: Optical vortices and polarization singularities,” Prog. Opt. 53, 293–363 (2009). [CrossRef]  

12. H. F. Schouten, G. Gbur, T. D. Visser, and E. Wolf, “Phase singularities of the coherence function in Young’s interference pattern,” Opt. Lett. 28, 968–970 (2003). [CrossRef]   [PubMed]  

13. J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics, 1999).

14. H. Schreiber and J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara, ed. (Wiley, 1992).

15. L. J. Allen, H. M. L. Faulkner, M. P. Oxley, and D. M. Paganin, “Phase retrieval and aberration correction in the presence of vortices in high-resolution transmission electron microscopy,” Ultramicroscopy 88, 85–97 (2001). [CrossRef]   [PubMed]  

16. L. J. Allen, H. M. L. Faulkner, K. A. Nugent, M. P. Oxley, and D. M. Paganin, “Phase retrieval from images in the presence of first-order vortices,” Phys. Rev. E 63, 037602 (2001). [CrossRef]  

17. M. J. Kitchen, D. M. Paganin, R. A. Lewis, N. Yagi, K. Uesugi, and S. T. Mudie, “On the origin of speckle in x-ray phase contrast images of lung issue,” Phys. Med. Biol. 49, 4335–4348 (2004). [CrossRef]   [PubMed]  

18. E. A. L. Henn, J. A. Seman, E. R. F. Ramos, M. Caracanhas, P. Castilho, E. P. Olimpio, G. Roati, D. V. Magalhaes, K. M. F. Magalhaes, and V. S. Bagnato, “Observation of vortex formation in an oscillation trapped Bose–Einstein condensate,” Phys. Rev. A 79, 043618 (2009). [CrossRef]  

19. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, “Vortices in a Bose–Einstein condensate,” Phys. Rev. Lett. 83, 2498–2501 (1999). [CrossRef]  

20. C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle, “Vortex nucleation in a stirred Bose–Einstein condensate,” Phys. Rev. Lett. 87, 210402 (2001). [CrossRef]  

21. I. Freund, “Critical point explosions in two-dimensional wave fields,” Opt. Commun. 159, 99–117 (1999). [CrossRef]  

22. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222, 117–125 (2003). [CrossRef]  

23. M. L. Marasinghe, D. M. Paganin, and M. Premaratne, “Coherence-vortex lattice formed via Mie scattering of partially coherent light by several dielectric nanospheres,” Opt. Lett. 36, 936–938 (2011). [CrossRef]   [PubMed]  

24. P. Liu, H. Yang, J. Rong, G. Wang, and Y. Yan, “Coherence vortex evolution of partially coherent vortex beams in the focal region,” Opt. Laser Technol. 42, 99–104 (2010). [CrossRef]  

25. W. Wang and M. Takeda, “Coherence current, coherence vortex and the conservation law of coherence,” Phys. Rev. Lett. 69, 223904 (2006). [CrossRef]  

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) A Cornu spiral generated by taking the Argand-plane image of the complex field resulting when a plane wave diffracts from an infinite opaque edge upon which it is incident. (b) From Morgan et al. [3], the simulated Argand-plane plot for coherent x-ray scalar waves diffracted by a uniform infinitely-long dielectric cylinder. One lobe of the Cornu spiral evolves into a hypocycloid in the geometrical shadow of the cylinder. The dotted circle corresponds to the unscattered plane-wave and has an intensity of 1.
Fig. 2
Fig. 2 The Argand mapping of a complex number Ψ(x, y) for a given point (x, y). The axis in the Argand plane are parameterized by ΨR and ΨI. The magnitude and phase of the wavefunction Ψ(x, y) are represented by |Ψ| and ϕ, respectively.
Fig. 3
Fig. 3 Various visualizations of Ψ(x, y) in Eqn. 11 evaluated over −2 ≤ x, yz. (a) |Ψ|; (b) phase ϕ; (c) a plot of |Ωz|, which falls to zero over a unit circle, as predicted by Eqn. 12; (d) a plot of |Lz| and (e), the parametric plot of Eqn. 14, which is the image of Ψ(x, y) in the Argand plane and takes the form of the cross-section of an elliptic umbilic catastrophe [13].
Fig. 4
Fig. 4 Schematic of apparatus for creating and identifying optical vortices. The apparatus is a form of Mach-Zehnder interferometer and the waveplates allow the recording of interferograms using a CCD camera with different phase shifts of the reference beam, for analysis using phase-step interferometery. Optical vortices are created by the speckle interference from the ground glass screen and the distribution of vortices is controlled by the size of the downstream iris.
Fig. 5
Fig. 5 (a) The intensity and (b) the phase, which were reconstructed using a phase-stepping method applied to the speckle field created by the apparatus in Fig. 4. The broken rectangles indicate the ROI. These areas are enlarged to reveal a greater level of detail.
Fig. 6
Fig. 6 The Argand-plane mapping of the ROI of the data shown in Fig. 5. The mapping is polluted by a high frequency ripple, an example of which is enlarged.
Fig. 7
Fig. 7 The application of Fourier-space Gaussian filter to smooth the data in Fig. 5 and eliminate the caustic ripple in Fig. 6 so that the underlying structure of the Argand-mapping of the data can be revealed. (a) The power spectrum of the data in Fig. 5, as a function of the spatial frequencies (kx, ky) dual to (x, y). The diagonal streaking originates from parasitic scattering. This is related to the ripple behaviour seen in Fig. 6; (b) The Fourier-space Gaussian filter and (c) the result of the application of the Gaussian filter on the power spectrum, from where the diagonal streaking has been removed.
Fig. 8
Fig. 8 The result of applying the Gaussian filter of Fig. 7 and expanding the density of points in the region of interest by a multiple of 15 using cubic interpolation. The intensity (a) and phase (b) appear smoother. Minimum values are represented by black, maximum by white. Several features are indicated in the phase: A vortex α, antivortex β and branch cut γ. The vorticity Ω and angular momentum L are also calculated. |Ωz| < 0.5 × 10−7 is shown in (c) and |Lz| < 0.035 is shown in (d). The locations of vortices are indicated by circles: dark fill for vortices and light fill for antivortices. The field-of-view measures 1.48 mm×1.11 mm. The Argand mapping is shown in e), now with much finer sampling, allowing a clear image of vorticity singularities.
Fig. 9
Fig. 9 (a) The zeroes (|Ωz| < 0.5 × 10−7) of the vorticity, calculated by evaluating the Jacobian of the mapping , as seen in Fig. 8(a). The image measures 1.48 mm×1.11 mm. The locations of vortices and anti-vortices are indicated by filled and unfilled circles, respectively. The regions where the Jacobian is sufficiently close to zero are mapped to the Argand plane (b) to reveal an image containing singularities only. A vortex-antivortex dipole separated by one ‘Jacobian line’ is indicated by the red loop in a) and mapped to the Argand plane in (c) to form a fold caustic. Two antivortices that are not separated by any Jacobian lines are indicated by the green loop and mapped to the Argand plane in (d) to reveal a patch of space that loops around but does not fold. Two vortices separated by two Jacobian lines are indicated by the blue loop and are mapped to the Argand plane in (e) to reveal a fold caustic and a cusp.
Fig. 10
Fig. 10 These data were obtained by shifting the ground glass screen by 10 μm. The region of study measures 1.48 mm×1.11 mm. (a) The zeros of its vorticity, where a “Jacobian ellipse” is indicated by a rectangular loop; (b) the zeroes of the orbital angular momentum, where the area that enclosed the Jacobian ellipse in (a) is shown to be lacking in any equally interesting features of the angular momentum and (c) a vorticity singularity closely resembling the cross-section of an elliptic umbilic catastrophe, induced by the mapping of the Jacobian ellipse to the Argand plane.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Ψ ( s ) = C ( s ) + i S ( s )
C = b { [ 1 2 + 𝒞 ( s ) ] [ 1 2 + 𝒮 ( s ) ] }
S = b { [ 1 2 + 𝒞 ( s ) ] + [ 1 2 + 𝒮 ( s ) ] }
( Ψ ( x , y ) ) { Ψ R , Ψ I } .
Ψ ( x , y ) = A + B x + C y + D x y + E x 2 + F y 2 ,
J ( x , y ) = | x Ψ R y Ψ R x Ψ I y Ψ I | = ( B R + D R Y + 2 E R x ) ( C I + D I x + 2 F I y ) ( C R + D R x + 2 f R y ) ( B I + D I y + 2 E I x ) ,
Ω = × j = Im ( Ψ * × Ψ ) = Ψ R × Ψ I ,
Ω z = Ψ R x Ψ I y Ψ I x Ψ R y ,
L z = Im [ Ψ * ( x y Ψ y x Ψ ) ] .
Ψ ± = ( x x 0 ) ± i ( y y 0 ) ,
Ψ ( x , y ) = A + x + i y + x y + i 2 ( x 2 y 2 ) , A
J ( x , y ) = 1 x 2 y 2 = 0 .
{ x ( θ ) = cos θ , y ( θ ) = sin θ , 0 θ 2 π .
{ Ψ R ( θ ) = A R + cos θ + 1 2 sin 2 θ , Ψ I ( θ ) = A I + sin θ + 1 2 cos 2 θ , A , θ [ 0 , 2 π ] .
ϕ ( x , y ) = tan 1 [ I 4 I 2 I 1 I 3 ] ,
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.