Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Spin–orbit periodic conversion in a gradient-index fiber

Open Access Open Access

Abstract

The characteristics of the cylindrical vector beam (CVB) and the cylindrical vector vortex beam (CVVB) in a radial gradient-index (GRIN) fiber are analyzed on the basis of the generalized Huygens–Fresnel principle. The CVB and CVVB exhibit periodic and stable transmission characteristics in the radial GRIN fiber. In the beam with a vortex phase (CVVB), the polarization changes and the spin angular momentum (SAM) is detected at the focal plane of the radial GRIN fiber. A spin–orbit periodic conversion is observed in the radial GRIN fibers. Finally, the SAM expression of partially coherent light is deduced and verified via a simulation.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Angular momentum (AM) as an important characteristic of light is divided into two categories: orbital AM (OAM) and spin AM (SAM). The OAM originates from the vortex phase and nonuniform polarization distribution, whereas the SAM is associated with the helicity of polarized light [15]. In the last few decades, the OAM and SAM have been used to trap particles in the optical tweezer field [69]. The orbiting motion of particles is observed when the OAM is transferred to the particles, and the SAM induces the rotation of the particles around their axis [8]. The OAM is also employed to increase the communication capacity based on the orthogonality of different topological charges [1015] and construct chiral nanostructures [16,17]. Spin–orbit conversions occur in tight focusing [18,19], scattering, and imaging optical systems [19] as well as surface plasmon polaritons [20,21]. Numerous physical phenomena occur owing to spin–orbit conversions, such as spin–orbit interactions [19,22,23] and the spin Hall effect of topological photonics [2426]. The complexity of the SAM increases when the confined field exhibits a vortex phase; for example, the distribution of photonic skyrmions is achieved because of spin–orbit interactions [20,21]. Spin-orbit conversion also occurs in the transmission process of the fiber, the spin-orbit interaction is studied in the multihelicoidal fiber which possesses a multihelical refractive index profile [27], few-mode fiber [28], ring-core optical fibers [29] etc. Especially, SAM-IOAM, SAM-EOAM and IOAM-EOAM interaction is implemented with the gradient-index fiber [30] and a new single-shot Müller matrix polarimeter is constructed though GRIN cascades which generates a vectorial beam [31]. However, spin-orbit interaction in gradient-index fibers is concentrated in the case of shorter lengths such as GRIN lens. It is necessary to study spin-orbit interaction in long-distance transmission of gradient-index fibers.

Partially coherent beams can be generated by appropriately reducing the beam coherence, which also affords strong directionality [32] and can address the shortcomings of the inhomogeneous intensity distribution and low anti-interference ability of highly coherent light in the far field [33]. Tuning the phase, polarization, and coherent structure of beams can yield new optical fields with increased complexity, such as partially coherent cylindrical vortex vector beams (CVVBs). Compared with fully coherent vortex beams, partially coherent vortex beams exhibit unique properties; in particular, the combined regulation of coherence and topological charges can promote beam shaping [34], polarization state conversion [35], and coherent singularity [36].

In this study, we analyzed the transmission characteristics of a cylindrical vector beams (CVB) and a CVVB in a GRIN fiber. The field distribution and state of polarization (SOP) of the CVB and CVVB propagating in the GRIN fiber are studied. The SOP of CVVB becomes elliptical from the radial and angular, and the OAM is converted to SAM at the focal plane of the GRIN fibers. Furthermore, spin–orbit periodic conversions occur in the GRIN fibers. Moreover, a SAM equation of partially coherent beams is established and the spin–orbit periodic conversion of partially coherent beams in the GRIN fibers is analyzed.

2. Theoretical model

CVB contains two different polarized light beams, radially polarized light (RB) and angularly polarized light (AB). When RB and AB carry the vortex phase, they become radially polarized vortex light (RVB) and angularly polarized vortex light (AVB). In this paper, we set RVB and AVB which topological charge m = 0 are RB and AB.

The electric field of a radially polarized vortex beam (RVB) at the source plane is expressed as [37]

$${\boldsymbol E}({x_0},{y_0} \,0) = {[{x_0} + {\mathop{\rm {isgn}}} (m){y_0}]^{|m|}}\exp ( - \frac{{x_0^2 + y_0^2}}{{{w^2}}})(\frac{{{x_0}}}{w}{\boldsymbol{e}_x} + \frac{{{y_0}}}{w}{\boldsymbol{e}_y})$$
where w denotes the beam width, m represents a topological charge, sgn() is a sign function, and x0 and y0 denote position vectors at the source plane. The electric field of the beam in an ABCD optical system can be characterized using the generalized Huygens–Fresnel principle [38].
$$\begin{aligned}{\boldsymbol E}(x,y,z) &= \frac{{i k}}{{2\pi B}}\int {\int {\boldsymbol E} } ({x_0},{y_0},0)\\&\times \exp \left. {\left\{ { - \frac{{\textrm{i}k}}{{2B}}[{A(x_0^2{\boldsymbol + }y_0^2) - 2({{x_0}x + {y_0}y} )+ D(x_{}^2{\boldsymbol + }y_{}^2)} ]} \right.} \right\}d{x_0}d{y_0}\end{aligned}$$

Substituting Eq. (1) into Eq. (2) yields the electric field expression of the RVB at the receiver plane.

$$\begin{aligned}{{\boldsymbol E}_x} &= \frac{k}{{Bw}}{\sqrt M ^{ - |m\textrm{|} - 3}}{2^{ - |m\textrm{|} - 2}}{\textrm{i}^{ - |m\textrm{|}}}\exp \left[ { - \frac{{{k^2}({{x^2} + {y^2}} )}}{{4{B^2}M}}} \right]\exp \left[ { - \frac{{\textrm{i}kD}}{{2B}}(x_{}^2{\boldsymbol + }y_{}^2)} \right]\\&\times \sum\limits_{d = 0}^{\textrm{|}m\textrm{|}} {\frac{{\textrm{|}m\textrm{|}!{\textrm{i}^d}}}{{d!(\textrm{|}m\textrm{|} - d)!}}} {\mathop{\rm sgn}} {(m)^d}{H_{|m\textrm{|} - d + 1}}\left( { - \frac{{kx}}{{2B\sqrt M }}} \right){H_d}\left( { - \frac{{ky}}{{2B\sqrt M }}} \right)\\{{\boldsymbol E}_y} &= \frac{k}{{Bw}}{\sqrt M ^{ - |m\textrm{|} - 3}}{2^{ - |m\textrm{|} - 2}}{\textrm{i}^{ - |m\textrm{|}}}\exp \left[ { - \frac{{{k^2}({{x^2} + {y^2}} )}}{{4{B^2}M}}} \right]\exp \left[ { - \frac{{\textrm{i}kD}}{{2B}}(x_{}^2{\boldsymbol + }y_{}^2)} \right]\\&\times \sum\limits_{d = 0}^{\textrm{|}m\textrm{|}} {\frac{{\textrm{|}m\textrm{|}!{\textrm{i}^d}}}{{d!(\textrm{|}m\textrm{|} - d)!}}} {\mathop{\rm sgn}} {(m)^d}{H_{|m\textrm{|} - d}}\left( { - \frac{{kx}}{{2B\sqrt M }}} \right){H_{d + 1}}\left( { - \frac{{ky}}{{2B\sqrt M }}} \right)\end{aligned}$$
$$M = \frac{1}{{{w^2}}} + \frac{{\textrm{i}kA}}{{2B}}$$
where x and y denote position vectors at the receiver plane and k = 2π/λ denotes the wavenumber. For paraxial beam propagation, the ABCD matrix of a radial GRIN fiber is expressed as [39]
$$\left[ {\begin{array}{cl} A&B\\ C&D \end{array}} \right] = \left[ {\begin{array}{cl} {\cos (\beta z)}&{\frac{{\sin (\beta z)}}{{{n_0}\beta }}}\\ { - {n_0}\beta \sin (\beta z)}&{\cos (\beta z)} \end{array}} \right]$$
which shows periodicity. In Eq. (4), β=5.257mm-1 is a GRIN coefficient, n0 = 1.46977 denotes the refractive index at the center of the fiber core, and n1 = 1.45702 represents the refractive index of the fiber cladding. The fiber core radius is set as 25µm. Consequently, the ABCD matrix of the GRIN fiber is obtained. The light field distribution is obtained by substituting Eq. (4) into Eq. (3).

Figure 1 shows the axial light field distribution of the RVB in the GRIN fiber, which exhibits periodicity. The light distribution is symmetrical at the focal plane. After focusing the beam using the GRIN fiber, a hollow light spot is observed when m = -2, 0 and 2 (without and with the presence of the vortex phase in the beam, respectively). When m =±1, the light spot is a dot that is symmetrical along the optical axis (with the presence of the vortex phase in the beam).

 figure: Fig. 1.

Fig. 1. Axial light field distribution of the RVB in the GRIN fiber. (a) m = -2. (b) m = -1 (c) m = 0. (d) m = 1. (e) m = 2. (The normalization of all graphs in this study is for the same topological charge m, and the corresponding values of different topological charges m are not comparable.)

Download Full Size | PDF

The SAM distribution is estimated using the following equation [5,40]

$${S_E} \sim {\mathop{\rm Im}\nolimits} ({{\boldsymbol E}_{}^\ast{\times} {\boldsymbol E}} )\textrm{ = }\left( {\begin{array}{c} {{\boldsymbol E}_y^\ast {{\boldsymbol E}_z} - {\boldsymbol E}_z^\ast {{\boldsymbol E}_y}}\\ {{\boldsymbol E}_z^\ast {{\boldsymbol E}_x} - {\boldsymbol E}_x^\ast {{\boldsymbol E}_z}}\\ {{\boldsymbol E}_x^\ast {{\boldsymbol E}_y} - {\boldsymbol E}_y^\ast {{\boldsymbol E}_x}} \end{array}} \right)$$

The longitudinal component of the SAM is related to the transverse field, expressed as [5,40]

$${S_z} \simeq {\mathop{\rm Im}\nolimits} ({{\boldsymbol E}_x^\ast {{\boldsymbol E}_y} - {\boldsymbol E}_y^\ast {{\boldsymbol E}_x}} )$$

The relation between the longitudinal component of the SAM (SZ) and the intensities of two circularly polarized components (namely, left circularly polarized (LCP) component, right circularly polarized (RCP)) of the transverse field can be obtained as follows [5,40].

$${S_z} \simeq {I_{LCP}} - {I_{RCP}}$$

Figure 2 presents the field, SOP, and SAM density distributions at the focal plane when the RVB propagates in the GRIN fiber. In Fig. 2(a), the black line represents the polarization distribution. This figure shows that the RVB is focused using the GRIN fiber; moreover, the polarization is unchanged when m =0 and changed when m = ±1and ±2, respectively (without and with the vortex phase in the beam, respectively). The polarization of the RVB in the GRIN fiber changes from a radial to an elliptical distribution. The vortex phase induces changes in the polarization, and the SAM appears at the focal plane (Fig. 2(d)). The left and right circularly polarized components of the RVB at the focal plane of the GRIN fiber are estimated using Eq. (7) and shown in Fig. 2(b) and (c). The SAM is expressed as the difference between the left and right circularly polarized components. At m = 0, the left and right circularly polarized components of the RVB show the same distribution and the SAM density does not exist. When the beam carries a vortex phase (m = ±1and ±2), the left and right circularly polarized components of the beam exhibit different distributions. In this case, the SAM appears at the focal plane of the GRIN fiber and the SAM density is mapped as the difference between the left and right circularly polarized components. The OAM is converted to the SAM at the focal plane of the GRIN fiber. By comparing Fig. 2(d1) and (d5), Fig. 2(d2) and (d4), It can be seen that SAM at the focal plane showing the opposite distribution when the beam carries the OAM of opposite topological charges.

 figure: Fig. 2.

Fig. 2. (a)The field, SOP, (b) LCP component, (c)RCP component, and (d)SAM of the RVB at the focal plane of the GRIN fiber.

Download Full Size | PDF

Equation (8) presents the polarization relation between angularly and radially polarized lights. Figure 3 shows the field, SOP, and SAM density distributions of angularly polarized vortex light (AVB) at the focal plane in the GRIN fiber obtained using Eq. (4). The AVB at the focal plane without a vortex phase (m = 0) continues to exhibit angular polarization, and the AVB with a vortex phase (m = ±1and ±2) shows nonuniform elliptical polarization (Fig. 3(a)).

$${\left[ {\begin{array}{c} {{{\boldsymbol E}_x}}\\ {{{\boldsymbol E}_y}} \end{array}} \right]_{\textrm{azimuthally}}}\textrm{ = }{\left[ {\begin{array}{c} { - {{\boldsymbol E}_y}}\\ {{{\boldsymbol E}_x}} \end{array}} \right]_{\textrm{radially}}}$$

Figures 3(b)–(d) show the distribution of the left and right circularly polarized components and the SAM of the AVB when m = 0, ±1, and ±2. At m = 0, the left and right circularly polarized components of the AVB show the same distribution and the SAM distribution of the AVB does not exist. At m = ±1 and ±2, the left and right circularly polarized components of the AVB show different distributions and the SAM density of the AVB is expressed as the difference between the left and right circularly polarized components. The spin–orbit conversion characteristics of the CVB and CVVB in GRIN fibers is analyzed based on the Huygens–Fresnel principle. This research is suitable for the study of spin-orbit conversion under paraxial conditional transport. Since no longitudinal component of the electric field (Ez) is generated under paraxial conditions, the radial component of SAM (Sr) is 0 and the longitudinal component of SAM (Sz) can be considered equal to the total SAM (S = Sz). OAM converted to SAM at the focal plane (z = (2n+1)l/2) and SAM converted to OAM at the period plane (z = nl). The spin–orbit periodic conversion in a GRIN fiber is proved by simulating the AM distribution at different locations.

 figure: Fig. 3.

Fig. 3. (a)The field, SOP, (b)LCP, (c)RCP, and (d)SAM of the AVB at the focal plane of the GRIN fiber.

Download Full Size | PDF

Partially coherent light at the source plane can be represented using a cross-spectral density matrix [41]

$$\mathop {\boldsymbol W}\limits^ \leftrightarrow ({{\boldsymbol s}_1},{{\boldsymbol s}_2},0) = \left[ {\begin{array}{cc} {{W_{xx}}({{\boldsymbol s}_1},{{\boldsymbol s}_2},0)}&{{W_{xy}}({{\boldsymbol s}_1},{{\boldsymbol s}_2},0)}\\ {{W_{yx}}({{\boldsymbol s}_1},{{\boldsymbol s}_2},0)}&{{W_{yy}}({{\boldsymbol s}_1},{{\boldsymbol s}_2},0)} \end{array}} \right]$$
where matrix elements ${W_{ij}}({{\boldsymbol s}_1},{{\boldsymbol s}_2},0) = \langle {\boldsymbol E}_i^\ast ({{\boldsymbol s}_1},0){{\boldsymbol E}_j}({{\boldsymbol s}_2},0)\rangle$ $({i,j = x,y} )$. ${\boldsymbol{s}_1}$ and ${\boldsymbol{s}_2}$ denote position vectors at the source plane.

The elements of the cross-spectral density matrix of a partially coherent radially polarized vortex beam (PRVB) at the source plane can be expressed as [37]

$$\begin{aligned}{W_{ij}}({\boldsymbol{s}_1},{\boldsymbol{s}_2},0) &= \frac{{{s_{1i}}{s_{2j}}}}{{{w^2}}}{[{s_{1x}} + {\mathop{\rm {isgn}}} (m){s_{1y}}]^{|m|}}{[{s_{2x}} - {\mathop{\rm {isgn}}} (m){s_{2y}}]^{|m|}}\\&\times \exp \left( { - \frac{{\boldsymbol{s}_1^2 + \boldsymbol{s}_2^2}}{{{w^2}}}} \right)\exp \left[ { - \frac{{{{(\boldsymbol{s}_1^{} - \boldsymbol{s}_2^{})}^2}}}{{2{\sigma^2}}}} \right]\end{aligned}$$
where $\sigma$ denotes the correlation length. Based on the generalized Huygens–Fresnel principle [38],
$$\begin{aligned}{W_{ij}}({{\boldsymbol \rho }_1},{{\boldsymbol \rho }_2},z) &= {\left( {\frac{k}{{2\pi B}}} \right)^2}\int {\int {\int {\int {{W_{ij}}} } } } ({{\boldsymbol s}_1},{{\boldsymbol s}_2},0)d{s_{1x}}d{s_{1y}}d{s_{2x}}d{s_{2y}}\\&\times \exp \left. {\left\{ { - \frac{{\textrm{i}k}}{{2B}}[{A({\boldsymbol s}_1^2 - {\boldsymbol s}_2^2) - 2({{{\boldsymbol s}_1}{{\boldsymbol \rho }_1} - {{\boldsymbol s}_2}{{\boldsymbol \rho }_2}} )+ D({\boldsymbol \rho }_1^2 - {\boldsymbol \rho }_2^2)} ]} \right.} \right\}\end{aligned}$$

The cross-spectral density matrix of a PRVB transmitted in the ABCD optical system is shown in Eq. (12), using which the light field distribution of the PRVB can be estimated.

$${\left[ {\begin{array}{cc} {{W_{xx}}}&{{W_{xy}}}\\ {{W_{yx}}}&{{W_{yy}}} \end{array}} \right]_{({{\boldsymbol \rho }_1},{{\boldsymbol \rho }_2},z)}} = \left[ {\begin{array}{cc} {G{G_1}{H_{\delta + 2}}({{l_1}} ){H_\eta }({{l_2}} )}&{G{G_2}{H_{\delta + 1}}({{l_1}} ){H_{\eta + 1}}({{l_2}} )}\\ {G{G_1}{H_{\delta + 1}}({{l_1}} ){H_{\eta + 1}}({{l_2}} )}&{G{G_2}{H_\delta }({{l_1}} ){H_{\eta + 2}}({{l_2}} )} \end{array}} \right]$$
$$\begin{aligned}G &= {\left( {\frac{k}{{Bw}}} \right)^2}\exp \left( { - \frac{{\textrm{i}kD}}{{2B}}({\boldsymbol \rho }_1^2 - {\boldsymbol \rho }_2^2)} \right)\exp \left[ {{{\left( {\frac{{\textrm{i}k{\rho_{1x}}}}{{2B\sqrt {{M_2}} }} - \frac{{\textrm{i}k{\rho_{2x}}}}{{4{\sigma^2}B{M_1}\sqrt {{M_2}} }}} \right)}^2}} \right]\\&\times \exp \left[ {{{\left( {\frac{{\textrm{i}k{\rho_{1y}}}}{{2B\sqrt {{M_2}} }} - \frac{{\textrm{i}k{\rho_{2y}}}}{{4{\sigma^2}B{M_1}\sqrt {{M_2}} }}} \right)}^2}} \right]\exp \left( { - \frac{{{k^2}\rho_2^2}}{{4{B^2}{M_1}}}} \right){2^{ - \frac{{5|m |+ 9}}{2}}}{\textrm{i}^{ - 2|m |- 2}}M_1^{ - \frac{{|m |+ 3}}{2}}\\&\times \sum\limits_{{d_1} = 0}^{|m\textrm{|}} {\sum\limits_{{d_2} = 0}^{|m\textrm{|}} {\frac{{|m |!{\textrm{i}^{{d_1}}}}}{{{d_1}!(|m |- {d_1})!}}} \frac{{|m |!{\textrm{i}^{{d_2}}}}}{{{d_2}!(|m |- {d_2})!}}} {\mathop{\rm sgn}} {(m)^{{d_1}}}{[{ - {\mathop{\rm sgn}} (m)} ]^{{d_2}}}\end{aligned}$$
$$\begin{aligned}&{G_1}\textrm{ = }\sum\limits_{{r_1} = 0}^{|m |-{d_2} + 1} {\sum\limits_{{r_2} = 0}^{{d_2}} {\left( {\begin{array}{c} {|m |- {d_2} + 1}\\ {{r_1}} \end{array}} \right)\left( {\begin{array}{c} {{d_2}}\\ {{r_2}} \end{array}} \right){H_{{r_1}}}({{k_1}} ){H_{{r_2}}}({{k_2}} )} } \sum\limits_{{n_1} = 0}^{\frac{{|m |- {d_2} + 1 - {r_1}}}{2}} {\sum\limits_{{n_2} = 0}^{\frac{{{d_2} - {r_2}}}{2}} {{{( - 1)}^{{n_1} + {n_2}}}} } M_2^p{(j )^{|m |+ 1 - {r_1} - 2{n_1} - {r_2} - 2{n_2}}}{q_1}\\&{G_2}\textrm{ = }\sum\limits_{{r_1} = 0}^{|m |- {d_2}} {\sum\limits_{{r_2} = 0}^{{d_2} + 1} {\left( {\begin{array}{c} {m - {d_2}}\\ {{r_1}} \end{array}} \right)} \left( {\begin{array}{c} {{d_2} + 1}\\ {{r_2}} \end{array}} \right){H_{{r_1}}}({{k_1}} )} {H_{{r_2}}}({{k_2}} )\sum\limits_{{n_1} = 0}^{\frac{{|m |- {d_2} - {r_1}}}{2}} {\sum\limits_{{n_2} = 0}^{\frac{{{d_2} + 1 - {r_2}}}{2}} {{{( - 1)}^{{n_1} + {n_2}}}} } M_2^p{(j )^{|m |+ 1 - {r_1} - 2{n_1} - {r_2} - 2{n_2}}}{q_2}\\&\begin{array}{lll}{l_1} = \frac{{k{\rho _{2x}}}}{{4{\sigma ^2}B{M_1}\sqrt {{M_2}} }} - \frac{{k{\rho _{1x}}}}{{2B\sqrt {{M_2}} }}&{l_2} = \frac{{k{\rho _{2y}}}}{{4{\sigma ^2}B{M_1}\sqrt {{M_2}} }} - \frac{{k{\rho _{1y}}}}{{2B\sqrt {{M_2}} }}&\delta \textrm{ = }2\left| m \right| - {d_1} - {d_2} - {r_1} - 2{n_1}\end{array}\\& \eta \textrm{ = }{d_1} + {d_2} - {r_2} - 2{n_2}\end{aligned}$$

$H({\cdot} )$ represents the Hermite polynomial and $\left( {\begin{array}{c} .\\ . \end{array}} \right)$ is a binomial coefficient. ${{\boldsymbol \rho }_1} = ({{\rho_{1x}},{\rho_{1y}}} )$ and ${{\boldsymbol \rho }_2} = ({{\rho_{2x}},{\rho_{2y}}} )$ are any two points at the output plane, and $k = 2\pi /\lambda$ is the wavenumber.

$${M_1} = \frac{1}{{w_{}^2}} + \frac{1}{{2\sigma _{}^2}} - \frac{{ikA}}{{2B}}{\kern 5pt}{M_2} = \frac{1}{{w_{}^2}} + \frac{1}{{2\sigma _{}^2}} + \frac{{ikA}}{{2B}} - \frac{1}{{4{M_1}\sigma _{}^4}}{\kern 5pt}j = \frac{\textrm{1}}{{\sqrt 2 {\sigma ^2}\sqrt {{M_1}} }}$$
$$\begin{array}{c}{k_1} = \frac{{k{\rho _{2x}}}}{{\sqrt 2 B\sqrt {{M_1}} }}{\kern 10pt}{k_2} = \frac{{k{\rho _{2y}}}}{{\sqrt 2 B\sqrt {{M_1}} }}{\kern 10pt}{q_1} = \frac{{(|m |- {d_2} + 1 - {r_1})!}}{{{n_1}!(|m |- {d_2} + 1 - {r_1} - 2{n_1})!}}\frac{{({d_2} - {r_2})!}}{{{n_2}!({d_2} - {r_2} - 2{n_2})!}}\\{\kern -30pt}{q_2} = \frac{{(|m |- {d_2} - {r_1})!}}{{{n_1}!(|m |- {d_2} - {r_1} - 2{n_1})!}}\frac{{({d_2} + 1 - {r_2})!}}{{{n_2}!({d_2} - {r_2} + 1 - 2{n_2})!}}{\kern 5pt} p= - \frac{{2|m |+ 4 - {r_1} - 2{n_1} - {r_2} - 2{n_2}}}{2}.\end{array}$$

The SAM density of partially coherent light can be obtained using that of fully coherent light [5,40,42] and the cross-spectral density matrix of partially coherent light:

$${S_z} \simeq {\mathop{\rm Im}\nolimits} ({{W_{yx}} - {W_{xy}}} )$$

Figure 4 shows the distribution of a PRVB with different coherences at the focal plane of the GRIN fiber for σ = 100m and 15µm. The light intensity, SOP, and SAM density distributions of the PRVB remain unchanged compared with those of the RVB (Figs. 4(a) and (b)) when σ = 100m for partially coherent light can be considered perfectly coherent light at σ = 100m. Thus, Eq. (13) is proven correct based on the light intensity, SOP, and SAM density distributions of the PRVB with σ = 100m. When σ = 15µm, the light intensity, SOP, and SAM density distributions of the PRVB change with the low σ value (Figs. 4(c) and (d)).

 figure: Fig. 4.

Fig. 4. (a)The field, SOP, (b)LCP, (c)RCP, and (d)SAM of the PRVB at the focal plane of the GRIN fiber. (a and b) σ = 100m. (c and d) σ = 15µm.

Download Full Size | PDF

On the basis of the polarization relation between angularly and radially polarized lights, the cross-spectral density matrix between partially coherent angularly polarized and partially coherent radially polarized beam can be defined as

$${\left[ {\begin{array}{cc} {{W_{xx}}}&{{W_{xy}}}\\ {{W_{yx}}}&{{W_{yy}}} \end{array}} \right]_{\textrm{azimuthally}}}\textrm{ = }{\left[ {\begin{array}{cc} {{W_{yy}}}&{ - {W_{yx}}}\\ { - {W_{xy}}}&{{W_{xx}}} \end{array}} \right]_{\textrm{radially}}}$$

The light intensity, SOP, and SAM distributions of a partially coherent angularly polarized vortex beam (PAVB) is shown in Fig. 5 for σ = 100 m (Figs. 5(a) and (b)) and 15µm (Figs. 5(c) and (d)). The vortex phase causes the polarization of the optical field to change from angular to elliptical and the OAM change to the SAM at the focal plane of the GRIN fiber. The spin–orbit periodic transition occurs in the GRIN fiber.

 figure: Fig. 5.

Fig. 5. (a)The field, SOP, (b)LCP, (c)RCP, and (d)SAM of the PAVB at the focal plane of the GRIN fiber. (a and b) σ = 100 m. (c and d) σ = 15µm.

Download Full Size | PDF

The SAM is mapped as the difference between the left and right circularly polarized components of the light field using Eq. (7). For perfectly coherent light, the SAM mapped based on the aforementioned difference is the same as that obtained using the original Eq. (6). Figure 6 shows the SAM distributions of the PRVB (σ = 100 m) based on the difference between the left and right circularly polarized components. The change is occurred in the SAM distributions of the PRVB (σ = 100 m) compared with Fig. 4(b) for the light field of a partially coherent beam is the sum of Wxx and Wyy which are elements of the cross-spectral density matrix. Using the difference between left and right circularly polarized component of light field is just for Wxx+Wyy.

 figure: Fig. 6.

Fig. 6. The (a)LCP, (b)RCP, and (c)SAM obtained based on the difference between the left and right circularly polarized components of the PRVB (σ = 100 m) at the focal plane of the GRIN fiber.

Download Full Size | PDF

3. Conclusion

Based on the generalized Huygens–Fresnel principle, the periodic transmission characterization and spin–orbit periodic conversions of the RVB, AVB, PRVB, and PAVB in a radial GRIN fiber are presented. Changes in the polarization occur and SAM is appearing at the focal plane of the GRIN fiber in the presence of a vortex phase. Moreover, the SAM distributions of partially coherent light cannot be achieved by characterizing the left and right circularly polarized components. The analysis of the transmission characteristics and SAM of the CVB and CVVB in the GRIN fiber has application significance in the field of optical communication and manipulation.

Funding

Taiyuan University of Science and Technology Scientific Research Initial Funding (20222009); Fundamental Research Program of Shanxi Province (202103021223271, 202103021223299); Shanxi Provincial Central Government Guides Local Science and Technology Development Fund Project (YDZX20201400001386).

Acknowledgments

Supported by Fundamental Research Program of Shanxi Province (202103021223271) and Taiyuan University of Science and Technology Scientific Research Initial Funding (20222009).

Disclosures

The authors declare that there are no conflicts of interest related to this article.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. H Li, C Ma, J Wang, M Tang, and X Li, “Spin-orbit Hall effect in the tight focusing of a radially polarized vortex beam,” Opt. Express 29(24), 39419–39427 (2021). [CrossRef]  

2. X Wang, J Chen, Y Li, J Ding, C Guo, and H Wang, “Optical orbital angular momentum from the curl of polarization,” Phys. Rev. Lett. 105(25), 253602 (2010). [CrossRef]  

3. C Li, P Shi, L Du, and X Yuan, “Mapping the near-field spin angular momenta in the structured surface plasmon polaritons field,” Nanoscale 12(25), 13674–13679 (2020). [CrossRef]  

4. X Yin, C Yang, J Li, Y Zhang, and C Zhao, “Mapping the spin angular momentum distribution of focused linearly and circularly polarized vortex fields,” Appl. Opt. 61(1), 115–119 (2022). [CrossRef]  

5. X Yin, P Shi, L Du, and X Yuan, “Spin-resolved near-field scanning optical microscopy for mapping of the spin angular momentum distribution of focused beams,” Appl. Phys. Lett. 116(24), 241107 (2020). [CrossRef]  

6. S Tao, X Yuan, J Lin, X Peng, and H Niu, “Fractional optical vortex beam induced rotation of particles,” Opt. Express 13(20), 7726–7731 (2005). [CrossRef]  

7. Y Shen, X Wang, Z Xie, C Min, X Fu, Q Liu, M Gong, and X Yuan, “Optical vortices 30 years on:OAM manipulation from topological charge to multiple singularities,” Light: Sci. Appl. 8(1), 90 (2019). [CrossRef]  

8. R Paez-Lopez, U Ruiz, V Arrizon, and R Ramos-Garcia, “Optical manipulation using optimal annular vortices,” Opt. Lett. 41(17), 4138–4141 (2016). [CrossRef]  

9. Z Shen, Z Hu, G Yuan, C Min, H Fang, and X Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37(22), 4627 (2012). [CrossRef]  

10. J Lin, X Yuan, S Tao, and R Burge, “Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states,” Appl. Opt. 46(21), 4680–4685 (2007). [CrossRef]  

11. J Wang, J Yang, I Fazal, N Ahmed, Y Yan, H Huang, Y Ren, Y Yue, S Dolinar, and M Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012). [CrossRef]  

12. T Lei, M Zhang, Y Li, P Jia, G Liu, X Xu, Z Li, C Min, J Lin, and C Yu, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light: Sci. Appl. 4(3), e257 (2015). [CrossRef]  

13. G Gibson, J Courtial, M J Padgett, M Vasnetsov, V Pas’ko, S M Barnett, and S Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(22), 5448–5456 (2004). [CrossRef]  

14. D J Richardson, J M Fini, and L E Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013). [CrossRef]  

15. G Labroille, N Barré, O Pinel, B Denolle, and J F Morizur, “Characterization and applications of spatial mode multiplexers based on Multi-Plane Light Conversion,” Opt. Fiber Technol. 35, 93–99 (2017). [CrossRef]  

16. K Toyoda, K Miyamoto, N Aoki, R Morita, and T Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012). [CrossRef]  

17. S. Syubaev, A. Zhizhchenko, A. Kuchmizhak, A. Porfirev, E. Pustovalov, O. Vitrik, Y. Kulchin, S. Khonina, and S Kudryashov, “Direct laser printing of chiral plasmonic nanojets by vortex beams,” Opt. Express 25(9), 10214–10223 (2017). [CrossRef]  

18. W Shu, C Lin, J Wu, S Chen, and S Wen, “Three-dimensional spin Hall effect of light in tight focusing,” Phys. Rev. A 101(2), 023819 (2020). [CrossRef]  

19. K Y Bliokh, E A Ostrovskaya, M A Alonso, O Rodríguez-Herrera, and C Dainty, “Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems,” Opt. Express 19(27), 26132–26149 (2011). [CrossRef]  

20. L Du, A Yang, A V Zayats, and X Yuan, “Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum,” Nat. Phys. 15(7), 650–654 (2019). [CrossRef]  

21. X Lei, A Yang, P Shi, Z Xie, L Du, A V Zayats, and X Yuan, “Photonic spin lattices: symmetry constraints for skyrmion and meron topologies,” Phys. Rev. Lett. 127(23), 237403 (2021). [CrossRef]  

22. Jan Petersen, Jürgen Volz, Rauschenbeutel, and Arno, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346(6205), 67–71 (2014). [CrossRef]  

23. Y Zhao, J S Edgar, G D M Jeffries, D Mcgloin, and D T Chiu, “Spin-to-Orbital Angular Momentum Conversion in a Strongly Focused Optical Beam,” Phys. Rev. Lett. 99(7), 073901 (2007). [CrossRef]  

24. K Y Bliokh and Y P Bliokh, “Conservation of Angular Momentum, Transverse Shift, and Spin Hall Effect in Reflection and Refraction of Electromagnetic Wave Packet,” Phys. Rev. Lett. 96(7), 073903 (2006). [CrossRef]  

25. J Korger, A Aiello, V Chille, P Banzer, and G Leuchs, “Observation of the Geometric Spin Hall Effect of Light,” Phys. Rev. Lett. 112(11), 113902 (2014). [CrossRef]  

26. X Yin, Z Ye, J Rho, Y Wang, and X Zhang, “Photonic Spin Hall Effect at Metasurfaces,” Science 339(6126), 1405–1407 (2013). [CrossRef]  

27. C N Alexeyev, A N Alexeyev, B P Lapin, G Milione, and M A Yavorsky, “Spin-orbit-interaction-induced generation of optical vortices in multihelicoidal fibers,” Phys. Rev. A 88(6), 063814 (2013). [CrossRef]  

28. A. Volyar, V. Zhilaıtis, and G. Shvedov G., “Spin–orbit interaction in the field of an optical vortex of a few-mode fiber,” Tech. Phys. Lett. 24(10), 826–828 (1998). [CrossRef]  

29. S D Johnson, Z Ma, M J Padgett, and S Ramachandran, “Measurement of the spin-orbit coupling interaction in ring-core optical fibers,” OSA Continuum 2(10), 2975–2983 (2019). [CrossRef]  

30. T P Chakravarthy and N K Viswanathan, “Direct and reciprocal spin-orbit interaction effects in a graded-index medium,” OSA Continuum 2(5), 1576–1589 (2019). [CrossRef]  

31. C He, J Chang, Q Hu, J Wang, and M J Booth, “Complex vectorial optics through gradient index lens cascades,” Nat. Commun. 10(1), 4264 (2019). [CrossRef]  

32. E Wolf and E Collett, “Partially coherent sources which produce the same far-field intensity distribution as a laser,” Opt. Commun. 25(3), 293–296 (1978). [CrossRef]  

33. X Liu, F Wang, C Wei, and Y Cai, “Experimental study of turbulence-induced beam wander and deformation of a partially coherent beam,” Opt. Lett. 39(11), 3336–3339 (2014). [CrossRef]  

34. X Liu, F Wang, L Liu, C Zhao, and Y Cai, “Generation and propagation of an electromagnetic Gaussian Schell-model vortex beam,” J. Opt. Soc. Am. A 32(11), 2058–2065 (2015). [CrossRef]  

35. L Guo, Y Chen, X Liu, L Liu, and Y Cai, “Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam,” Opt. Express 24(13), 13714–13728 (2016). [CrossRef]  

36. J Wang, S Yang, M Guo, Z Feng, and J Li, “Change in phase singularities of a partially coherent Gaussian vortex beam propagating in a GRIN fiber,” Opt. Express 28(4), 4661–4673 (2020). [CrossRef]  

37. J Li, J Li, L Guo, M Cheng, and L Xi, “Polarization characteristics of radially polarized partially coherent vortex beam in anisotropic plasma turbulence,” Wave Random Complex. 31(6), 1–16 (2020). [CrossRef]  

38. A E Siegman, “Lasers,” (University Science Books, California) 777–811 (1986).

39. H Roychowdhury, G P Agrawal, and E Wolf, “Changes in the spectrum, in the spectral degree of polarization, and in the spectral degree of coherence of a partially coherent beam propagating through a gradient-index fiber,” J. Opt. Soc. Am. A 23(4), 940–948 (2006). [CrossRef]  

40. S N Khonina and A P Porfirev, “Harnessing of inhomogeneously polarized Hermite–Gaussian vector beams to manage the 3D spin angular momentum density distribution,” Nanophotonics 11(4), 697–712 (2022). [CrossRef]  

41. E Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Rev. Lett. 312(5-6), 263–267 (2003). [CrossRef]  

42. O Korotkova and E Wolf, “Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett. 30(2), 198–200 (2005). [CrossRef]  

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Axial light field distribution of the RVB in the GRIN fiber. (a) m = -2. (b) m = -1 (c) m = 0. (d) m = 1. (e) m = 2. (The normalization of all graphs in this study is for the same topological charge m, and the corresponding values of different topological charges m are not comparable.)
Fig. 2.
Fig. 2. (a)The field, SOP, (b) LCP component, (c)RCP component, and (d)SAM of the RVB at the focal plane of the GRIN fiber.
Fig. 3.
Fig. 3. (a)The field, SOP, (b)LCP, (c)RCP, and (d)SAM of the AVB at the focal plane of the GRIN fiber.
Fig. 4.
Fig. 4. (a)The field, SOP, (b)LCP, (c)RCP, and (d)SAM of the PRVB at the focal plane of the GRIN fiber. (a and b) σ = 100m. (c and d) σ = 15µm.
Fig. 5.
Fig. 5. (a)The field, SOP, (b)LCP, (c)RCP, and (d)SAM of the PAVB at the focal plane of the GRIN fiber. (a and b) σ = 100 m. (c and d) σ = 15µm.
Fig. 6.
Fig. 6. The (a)LCP, (b)RCP, and (c)SAM obtained based on the difference between the left and right circularly polarized components of the PRVB (σ = 100 m) at the focal plane of the GRIN fiber.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E ( x 0 , y 0 0 ) = [ x 0 + i s g n ( m ) y 0 ] | m | exp ( x 0 2 + y 0 2 w 2 ) ( x 0 w e x + y 0 w e y )
E ( x , y , z ) = i k 2 π B E ( x 0 , y 0 , 0 ) × exp { i k 2 B [ A ( x 0 2 + y 0 2 ) 2 ( x 0 x + y 0 y ) + D ( x 2 + y 2 ) ] } d x 0 d y 0
E x = k B w M | m | 3 2 | m | 2 i | m | exp [ k 2 ( x 2 + y 2 ) 4 B 2 M ] exp [ i k D 2 B ( x 2 + y 2 ) ] × d = 0 | m | | m | ! i d d ! ( | m | d ) ! sgn ( m ) d H | m | d + 1 ( k x 2 B M ) H d ( k y 2 B M ) E y = k B w M | m | 3 2 | m | 2 i | m | exp [ k 2 ( x 2 + y 2 ) 4 B 2 M ] exp [ i k D 2 B ( x 2 + y 2 ) ] × d = 0 | m | | m | ! i d d ! ( | m | d ) ! sgn ( m ) d H | m | d ( k x 2 B M ) H d + 1 ( k y 2 B M )
M = 1 w 2 + i k A 2 B
[ A B C D ] = [ cos ( β z ) sin ( β z ) n 0 β n 0 β sin ( β z ) cos ( β z ) ]
S E Im ( E × E )  =  ( E y E z E z E y E z E x E x E z E x E y E y E x )
S z Im ( E x E y E y E x )
S z I L C P I R C P
[ E x E y ] azimuthally  =  [ E y E x ] radially
W ( s 1 , s 2 , 0 ) = [ W x x ( s 1 , s 2 , 0 ) W x y ( s 1 , s 2 , 0 ) W y x ( s 1 , s 2 , 0 ) W y y ( s 1 , s 2 , 0 ) ]
W i j ( s 1 , s 2 , 0 ) = s 1 i s 2 j w 2 [ s 1 x + i s g n ( m ) s 1 y ] | m | [ s 2 x i s g n ( m ) s 2 y ] | m | × exp ( s 1 2 + s 2 2 w 2 ) exp [ ( s 1 s 2 ) 2 2 σ 2 ]
W i j ( ρ 1 , ρ 2 , z ) = ( k 2 π B ) 2 W i j ( s 1 , s 2 , 0 ) d s 1 x d s 1 y d s 2 x d s 2 y × exp { i k 2 B [ A ( s 1 2 s 2 2 ) 2 ( s 1 ρ 1 s 2 ρ 2 ) + D ( ρ 1 2 ρ 2 2 ) ] }
[ W x x W x y W y x W y y ] ( ρ 1 , ρ 2 , z ) = [ G G 1 H δ + 2 ( l 1 ) H η ( l 2 ) G G 2 H δ + 1 ( l 1 ) H η + 1 ( l 2 ) G G 1 H δ + 1 ( l 1 ) H η + 1 ( l 2 ) G G 2 H δ ( l 1 ) H η + 2 ( l 2 ) ]
G = ( k B w ) 2 exp ( i k D 2 B ( ρ 1 2 ρ 2 2 ) ) exp [ ( i k ρ 1 x 2 B M 2 i k ρ 2 x 4 σ 2 B M 1 M 2 ) 2 ] × exp [ ( i k ρ 1 y 2 B M 2 i k ρ 2 y 4 σ 2 B M 1 M 2 ) 2 ] exp ( k 2 ρ 2 2 4 B 2 M 1 ) 2 5 | m | + 9 2 i 2 | m | 2 M 1 | m | + 3 2 × d 1 = 0 | m | d 2 = 0 | m | | m | ! i d 1 d 1 ! ( | m | d 1 ) ! | m | ! i d 2 d 2 ! ( | m | d 2 ) ! sgn ( m ) d 1 [ sgn ( m ) ] d 2
G 1  =  r 1 = 0 | m | d 2 + 1 r 2 = 0 d 2 ( | m | d 2 + 1 r 1 ) ( d 2 r 2 ) H r 1 ( k 1 ) H r 2 ( k 2 ) n 1 = 0 | m | d 2 + 1 r 1 2 n 2 = 0 d 2 r 2 2 ( 1 ) n 1 + n 2 M 2 p ( j ) | m | + 1 r 1 2 n 1 r 2 2 n 2 q 1 G 2  =  r 1 = 0 | m | d 2 r 2 = 0 d 2 + 1 ( m d 2 r 1 ) ( d 2 + 1 r 2 ) H r 1 ( k 1 ) H r 2 ( k 2 ) n 1 = 0 | m | d 2 r 1 2 n 2 = 0 d 2 + 1 r 2 2 ( 1 ) n 1 + n 2 M 2 p ( j ) | m | + 1 r 1 2 n 1 r 2 2 n 2 q 2 l 1 = k ρ 2 x 4 σ 2 B M 1 M 2 k ρ 1 x 2 B M 2 l 2 = k ρ 2 y 4 σ 2 B M 1 M 2 k ρ 1 y 2 B M 2 δ  =  2 | m | d 1 d 2 r 1 2 n 1 η  =  d 1 + d 2 r 2 2 n 2
M 1 = 1 w 2 + 1 2 σ 2 i k A 2 B M 2 = 1 w 2 + 1 2 σ 2 + i k A 2 B 1 4 M 1 σ 4 j = 1 2 σ 2 M 1
k 1 = k ρ 2 x 2 B M 1 k 2 = k ρ 2 y 2 B M 1 q 1 = ( | m | d 2 + 1 r 1 ) ! n 1 ! ( | m | d 2 + 1 r 1 2 n 1 ) ! ( d 2 r 2 ) ! n 2 ! ( d 2 r 2 2 n 2 ) ! q 2 = ( | m | d 2 r 1 ) ! n 1 ! ( | m | d 2 r 1 2 n 1 ) ! ( d 2 + 1 r 2 ) ! n 2 ! ( d 2 r 2 + 1 2 n 2 ) ! p = 2 | m | + 4 r 1 2 n 1 r 2 2 n 2 2 .
S z Im ( W y x W x y )
[ W x x W x y W y x W y y ] azimuthally  =  [ W y y W y x W x y W x x ] radially
Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.