Abstract

Combining the mathematical relationships between the grating wavefront and surfaces with the spatial relationships between the two grating wavefront, a mathematical model of the mosaicking errors is established to mosaic gratings. The five-dimensional mosaicking errors will respectively be calculated and then removed by the adjustment mechanisms. Mosaicking experiments are performed by using two gratings. First, by using zeroth order, the longitudinal offset is calculated and removed. Second, by using the diffraction order, the in-plane angle and grating spacing are calculated and removed, while the tip and tilt angles are calculated and removed. And then a mosaic grating is obtained.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Removal of all mosaic grating errors in a single-interferometer system by a phase-difference reference window

Yuxian Lu, Xiangdong Qi, Xiaotian Li, Haili Yu, Shan Jiang, Heshig Bayan, and Lu Yin
Appl. Opt. 55(28) 7997-8002 (2016)

Method for calculation and analysis of the weights of grating mosaic errors

Guojun Yang, Xiangdong Qi, Xiaotian Li, Haili Yu, Min Cong, Xiaotao Mi, and Shuo Yang
Appl. Opt. 58(18) 4939-4945 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8(1), 156–199 (2016).
    [Crossref]
  2. S. S. Vogt and D. J. Schroeder, “Introduction to the session on high resolution spectrographs,” in Instrumentation for Ground-Based Optical Astronomy (©Springer-Verlag, 1988).
  3. T. Blasiak and S. Zheleznyak, “History and construction of large mosaic diffraction gratings,” Proc. SPIE 4485, 370–377 (2002).
    [Crossref]
  4. S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
    [Crossref]
  5. G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
    [Crossref]
  6. J. S. Pazder, S. Roberts, R. Abraham, A. Anthony, M. Fletcher, T. Hardy, D. Loop, and S. Sun, “WFOS: a wide field optical spectrograph for the Thirty Meter Telescope,” Proc. SPIE 6269, 62691X (2006).
    [Crossref]
  7. J. Qiao, A. Kalb, T. Nguyen, J. Bunkenburg, D. Canning, and J. H. Kelly, “Demonstration of large-aperture tiled-grating compressors for high-energy, petawatt-class, chirped-pulse amplification systems,” Opt. Lett. 33(15), 1684–1686 (2008).
    [Crossref] [PubMed]
  8. J. Qiao, A. Kalb, M. J. Guardalben, G. King, D. Canning, and J. H. Kelly, “Large-aperture grating tiling by interferometry for petawatt chirped-pulse-amplification systems,” Opt. Express 15(15), 9562–9574 (2007).
    [Crossref] [PubMed]
  9. T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, and D. D. Meyerhofer, “Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers,” Opt. Lett. 29(6), 635–637 (2004).
    [Crossref] [PubMed]
  10. A. Cotel, C. Crotti, P. Audebert, C. Le Bris, and C. Le Blanc, “Tiled-grating compression of multiterawatt laser pulses,” Opt. Lett. 32(12), 1749–1751 (2007).
    [Crossref] [PubMed]
  11. A. Cotel, M. Castaing, P. Pichon, and C. Le Blanc, “Phased-array grating compression for high-energy chirped pulse amplification lasers,” Opt. Express 15(5), 2742–2752 (2007).
    [Crossref] [PubMed]
  12. Y. Ezaki, M. Tabata, M. Kihara, Y. Horiuchi, M. Endo, and T. Jitsuno, “Development of a segmented grating mount system for FIREX-1,” Proceedings of the fifth International Conference on Inertial Fusion Sciences and Applications, J. Phys. Conf. Ser. 112(3), 032027 (2008).
    [Crossref]
  13. S. Montant, G. Marre, N. Blanchot, C. Rouyer, L. Videau, and C. Sauteret, “3D numerical model for a focal plane view in case of mosaic grating compressor for high energy CPA chain,” Opt. Express 14(25), 12532–12545 (2006).
    [Crossref] [PubMed]
  14. L. Zeng and L. Li, “Method of making mosaic gratings by using a two-color heterodyne interferometer containing a reference grating,” Opt. Lett. 31(2), 152–154 (2006).
    [Crossref] [PubMed]
  15. Y. Lu, X. Qi, X. Li, H. Yu, S. Jiang, H. Bayan, and L. Yin, “Removal of all mosaic grating errors in a single-interferometer system by a phase-difference reference window,” Appl. Opt. 55(28), 7997–8002 (2016).
    [Crossref] [PubMed]
  16. M. Cong, X. Qi, X. Mi, H. Yu, X. Li, and Y. Lu, “Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic,” Optics and Precision Engineering 25(12), 3027–3033 (2017).
    [Crossref]
  17. M. J. Guardalben, “Littrow angle method to remove alignment errors in grating pulse compressors,” Appl. Opt. 47(27), 4959–4964 (2008).
    [Crossref] [PubMed]
  18. “Operation,” in GPI Series Interferometer Operating Manual (© Copyright by Zygo Corporation, 2007).
  19. X. Li, X. Bayanheshig, H. Qi, Yu, and Y. Tang, “Two-Dimensional Fast Fourier Transform Method of Analyzing the Influence of Plane Grating’s Line Error and Surface Error on Grating’s Spectral Performance,” Acta Optica Sinica 32(11), 110501 (2012).

2017 (1)

M. Cong, X. Qi, X. Mi, H. Yu, X. Li, and Y. Lu, “Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic,” Optics and Precision Engineering 25(12), 3027–3033 (2017).
[Crossref]

2016 (2)

2012 (1)

X. Li, X. Bayanheshig, H. Qi, Yu, and Y. Tang, “Two-Dimensional Fast Fourier Transform Method of Analyzing the Influence of Plane Grating’s Line Error and Surface Error on Grating’s Spectral Performance,” Acta Optica Sinica 32(11), 110501 (2012).

2011 (1)

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

2010 (1)

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

2008 (3)

2007 (3)

2006 (3)

2004 (1)

2002 (1)

T. Blasiak and S. Zheleznyak, “History and construction of large mosaic diffraction gratings,” Proc. SPIE 4485, 370–377 (2002).
[Crossref]

Abraham, R.

J. S. Pazder, S. Roberts, R. Abraham, A. Anthony, M. Fletcher, T. Hardy, D. Loop, and S. Sun, “WFOS: a wide field optical spectrograph for the Thirty Meter Telescope,” Proc. SPIE 6269, 62691X (2006).
[Crossref]

Anthony, A.

J. S. Pazder, S. Roberts, R. Abraham, A. Anthony, M. Fletcher, T. Hardy, D. Loop, and S. Sun, “WFOS: a wide field optical spectrograph for the Thirty Meter Telescope,” Proc. SPIE 6269, 62691X (2006).
[Crossref]

Audebert, P.

Barho, R.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Bayan, H.

Bayanheshig, X.

X. Li, X. Bayanheshig, H. Qi, Yu, and Y. Tang, “Two-Dimensional Fast Fourier Transform Method of Analyzing the Influence of Plane Grating’s Line Error and Surface Error on Grating’s Spectral Performance,” Acta Optica Sinica 32(11), 110501 (2012).

Bender, C.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Birkmann, S. M.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Blanchot, N.

Blasiak, T.

T. Blasiak and S. Zheleznyak, “History and construction of large mosaic diffraction gratings,” Proc. SPIE 4485, 370–377 (2002).
[Crossref]

Böker, T.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Bonod, N.

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8(1), 156–199 (2016).
[Crossref]

Bunkenburg, J.

Canning, D.

Castaing, M.

Cong, M.

M. Cong, X. Qi, X. Mi, H. Yu, X. Li, and Y. Lu, “Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic,” Optics and Precision Engineering 25(12), 3027–3033 (2017).
[Crossref]

Cotel, A.

Cresci, G.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Crotti, C.

De Marchi, G.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Dorner, B.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Endl, M.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Endo, M.

Y. Ezaki, M. Tabata, M. Kihara, Y. Horiuchi, M. Endo, and T. Jitsuno, “Development of a segmented grating mount system for FIREX-1,” Proceedings of the fifth International Conference on Inertial Fusion Sciences and Applications, J. Phys. Conf. Ser. 112(3), 032027 (2008).
[Crossref]

Engel, L.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Ezaki, Y.

Y. Ezaki, M. Tabata, M. Kihara, Y. Horiuchi, M. Endo, and T. Jitsuno, “Development of a segmented grating mount system for FIREX-1,” Proceedings of the fifth International Conference on Inertial Fusion Sciences and Applications, J. Phys. Conf. Ser. 112(3), 032027 (2008).
[Crossref]

Ferruit, P.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Fletcher, M.

J. S. Pazder, S. Roberts, R. Abraham, A. Anthony, M. Fletcher, T. Hardy, D. Loop, and S. Sun, “WFOS: a wide field optical spectrograph for the Thirty Meter Telescope,” Proc. SPIE 6269, 62691X (2006).
[Crossref]

Giardino, G.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Gnata, X.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Gross, T.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Guardalben, M. J.

Hardy, T.

J. S. Pazder, S. Roberts, R. Abraham, A. Anthony, M. Fletcher, T. Hardy, D. Loop, and S. Sun, “WFOS: a wide field optical spectrograph for the Thirty Meter Telescope,” Proc. SPIE 6269, 62691X (2006).
[Crossref]

Horiuchi, Y.

Y. Ezaki, M. Tabata, M. Kihara, Y. Horiuchi, M. Endo, and T. Jitsuno, “Development of a segmented grating mount system for FIREX-1,” Proceedings of the fifth International Conference on Inertial Fusion Sciences and Applications, J. Phys. Conf. Ser. 112(3), 032027 (2008).
[Crossref]

Huang, H.

Jakobsen, P.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Jiang, S.

Jitsuno, T.

Y. Ezaki, M. Tabata, M. Kihara, Y. Horiuchi, M. Endo, and T. Jitsuno, “Development of a segmented grating mount system for FIREX-1,” Proceedings of the fifth International Conference on Inertial Fusion Sciences and Applications, J. Phys. Conf. Ser. 112(3), 032027 (2008).
[Crossref]

Kalb, A.

Kelly, J. H.

Kessler, T. J.

Kihara, M.

Y. Ezaki, M. Tabata, M. Kihara, Y. Horiuchi, M. Endo, and T. Jitsuno, “Development of a segmented grating mount system for FIREX-1,” Proceedings of the fifth International Conference on Inertial Fusion Sciences and Applications, J. Phys. Conf. Ser. 112(3), 032027 (2008).
[Crossref]

King, G.

Kosse, M.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Kozlov, A.

Le Blanc, C.

Le Bris, C.

Leikert, T.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Li, L.

Li, X.

M. Cong, X. Qi, X. Mi, H. Yu, X. Li, and Y. Lu, “Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic,” Optics and Precision Engineering 25(12), 3027–3033 (2017).
[Crossref]

Y. Lu, X. Qi, X. Li, H. Yu, S. Jiang, H. Bayan, and L. Yin, “Removal of all mosaic grating errors in a single-interferometer system by a phase-difference reference window,” Appl. Opt. 55(28), 7997–8002 (2016).
[Crossref] [PubMed]

X. Li, X. Bayanheshig, H. Qi, Yu, and Y. Tang, “Two-Dimensional Fast Fourier Transform Method of Analyzing the Influence of Plane Grating’s Line Error and Surface Error on Grating’s Spectral Performance,” Acta Optica Sinica 32(11), 110501 (2012).

Loop, D.

J. S. Pazder, S. Roberts, R. Abraham, A. Anthony, M. Fletcher, T. Hardy, D. Loop, and S. Sun, “WFOS: a wide field optical spectrograph for the Thirty Meter Telescope,” Proc. SPIE 6269, 62691X (2006).
[Crossref]

Lu, Y.

M. Cong, X. Qi, X. Mi, H. Yu, X. Li, and Y. Lu, “Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic,” Optics and Precision Engineering 25(12), 3027–3033 (2017).
[Crossref]

Y. Lu, X. Qi, X. Li, H. Yu, S. Jiang, H. Bayan, and L. Yin, “Removal of all mosaic grating errors in a single-interferometer system by a phase-difference reference window,” Appl. Opt. 55(28), 7997–8002 (2016).
[Crossref] [PubMed]

Mahadevan, S.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Marre, G.

Meyerhofer, D. D.

Mi, X.

M. Cong, X. Qi, X. Mi, H. Yu, X. Li, and Y. Lu, “Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic,” Optics and Precision Engineering 25(12), 3027–3033 (2017).
[Crossref]

Montant, S.

Mosner, P.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Neauport, J.

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8(1), 156–199 (2016).
[Crossref]

Nguyen, T.

Pazder, J. S.

J. S. Pazder, S. Roberts, R. Abraham, A. Anthony, M. Fletcher, T. Hardy, D. Loop, and S. Sun, “WFOS: a wide field optical spectrograph for the Thirty Meter Telescope,” Proc. SPIE 6269, 62691X (2006).
[Crossref]

Pichon, P.

Qi, H.

X. Li, X. Bayanheshig, H. Qi, Yu, and Y. Tang, “Two-Dimensional Fast Fourier Transform Method of Analyzing the Influence of Plane Grating’s Line Error and Surface Error on Grating’s Spectral Performance,” Acta Optica Sinica 32(11), 110501 (2012).

Qi, X.

M. Cong, X. Qi, X. Mi, H. Yu, X. Li, and Y. Lu, “Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic,” Optics and Precision Engineering 25(12), 3027–3033 (2017).
[Crossref]

Y. Lu, X. Qi, X. Li, H. Yu, S. Jiang, H. Bayan, and L. Yin, “Removal of all mosaic grating errors in a single-interferometer system by a phase-difference reference window,” Appl. Opt. 55(28), 7997–8002 (2016).
[Crossref] [PubMed]

Qiao, J.

Ramsey, L.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Redman, S.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Roberts, S.

J. S. Pazder, S. Roberts, R. Abraham, A. Anthony, M. Fletcher, T. Hardy, D. Loop, and S. Sun, “WFOS: a wide field optical spectrograph for the Thirty Meter Telescope,” Proc. SPIE 6269, 62691X (2006).
[Crossref]

Rosales-Ortega, F.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Rouyer, C.

Roy, A.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Sauteret, C.

Savignol, J.-C.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Sigurdsson, S.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Sirianni, M.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Stuhlinger, M.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Sun, S.

J. S. Pazder, S. Roberts, R. Abraham, A. Anthony, M. Fletcher, T. Hardy, D. Loop, and S. Sun, “WFOS: a wide field optical spectrograph for the Thirty Meter Telescope,” Proc. SPIE 6269, 62691X (2006).
[Crossref]

Tabata, M.

Y. Ezaki, M. Tabata, M. Kihara, Y. Horiuchi, M. Endo, and T. Jitsuno, “Development of a segmented grating mount system for FIREX-1,” Proceedings of the fifth International Conference on Inertial Fusion Sciences and Applications, J. Phys. Conf. Ser. 112(3), 032027 (2008).
[Crossref]

Tang, Y.

X. Li, X. Bayanheshig, H. Qi, Yu, and Y. Tang, “Two-Dimensional Fast Fourier Transform Method of Analyzing the Influence of Plane Grating’s Line Error and Surface Error on Grating’s Spectral Performance,” Acta Optica Sinica 32(11), 110501 (2012).

te Plate, M. B. J.

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

Troupe, N.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Videau, L.

Wolszczan, A.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Wright, J.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Yin, L.

Yu,

X. Li, X. Bayanheshig, H. Qi, Yu, and Y. Tang, “Two-Dimensional Fast Fourier Transform Method of Analyzing the Influence of Plane Grating’s Line Error and Surface Error on Grating’s Spectral Performance,” Acta Optica Sinica 32(11), 110501 (2012).

Yu, H.

M. Cong, X. Qi, X. Mi, H. Yu, X. Li, and Y. Lu, “Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic,” Optics and Precision Engineering 25(12), 3027–3033 (2017).
[Crossref]

Y. Lu, X. Qi, X. Li, H. Yu, S. Jiang, H. Bayan, and L. Yin, “Removal of all mosaic grating errors in a single-interferometer system by a phase-difference reference window,” Appl. Opt. 55(28), 7997–8002 (2016).
[Crossref] [PubMed]

Zeng, L.

Zhao, B.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Zheleznyak, S.

T. Blasiak and S. Zheleznyak, “History and construction of large mosaic diffraction gratings,” Proc. SPIE 4485, 370–377 (2002).
[Crossref]

Zonak, S.

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

Acta Optica Sinica (1)

X. Li, X. Bayanheshig, H. Qi, Yu, and Y. Tang, “Two-Dimensional Fast Fourier Transform Method of Analyzing the Influence of Plane Grating’s Line Error and Surface Error on Grating’s Spectral Performance,” Acta Optica Sinica 32(11), 110501 (2012).

Adv. Opt. Photonics (1)

N. Bonod and J. Neauport, “Diffraction gratings: from principles to applications in high-intensity lasers,” Adv. Opt. Photonics 8(1), 156–199 (2016).
[Crossref]

Appl. Opt. (2)

Opt. Express (3)

Opt. Lett. (4)

Optics and Precision Engineering (1)

M. Cong, X. Qi, X. Mi, H. Yu, X. Li, and Y. Lu, “Influence of incident light angles on mosaic grating errors in optical path for grating replication and mosaic,” Optics and Precision Engineering 25(12), 3027–3033 (2017).
[Crossref]

Proc. SPIE (4)

T. Blasiak and S. Zheleznyak, “History and construction of large mosaic diffraction gratings,” Proc. SPIE 4485, 370–377 (2002).
[Crossref]

S. Mahadevan, L. Ramsey, J. Wright, M. Endl, S. Redman, C. Bender, A. Roy, S. Zonak, N. Troupe, L. Engel, S. Sigurdsson, A. Wolszczan, and B. Zhao, “The habitable zone planet finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass,” Proc. SPIE 7735, 77356X (2010).
[Crossref]

G. De Marchi, M. B. J. te Plate, S. M. Birkmann, T. Böker, P. Ferruit, G. Giardino, P. Jakobsen, M. Sirianni, J.-C. Savignol, X. Gnata, R. Barho, M. Kosse, P. Mosner, B. Dorner, G. Cresci, F. Rosales-Ortega, M. Stuhlinger, T. Gross, and T. Leikert, “Calibrating the position of images and spectra in the NIRSpec instrument for the James Webb Space Telescope,” Proc. SPIE 8150, 81500C (2011).
[Crossref]

J. S. Pazder, S. Roberts, R. Abraham, A. Anthony, M. Fletcher, T. Hardy, D. Loop, and S. Sun, “WFOS: a wide field optical spectrograph for the Thirty Meter Telescope,” Proc. SPIE 6269, 62691X (2006).
[Crossref]

Proceedings of the fifth International Conference on Inertial Fusion Sciences and Applications, J. Phys. Conf. Ser. (1)

Y. Ezaki, M. Tabata, M. Kihara, Y. Horiuchi, M. Endo, and T. Jitsuno, “Development of a segmented grating mount system for FIREX-1,” Proceedings of the fifth International Conference on Inertial Fusion Sciences and Applications, J. Phys. Conf. Ser. 112(3), 032027 (2008).
[Crossref]

Other (2)

“Operation,” in GPI Series Interferometer Operating Manual (© Copyright by Zygo Corporation, 2007).

S. S. Vogt and D. J. Schroeder, “Introduction to the session on high resolution spectrographs,” in Instrumentation for Ground-Based Optical Astronomy (©Springer-Verlag, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Mosaicking errors of two adjacent gratings.
Fig. 2
Fig. 2 Adjustment mechanisms for the mosaicking errors installed on the gratings.
Fig. 3
Fig. 3 Optical path for the zeroth order.
Fig. 4
Fig. 4 Zeroth order of mosaic grating with Δθx, Δθy and Δz. (a) shows the three-dimensional map, and (b) shows the intensity map.
Fig. 5
Fig. 5 Zeroth order after adjustment. (a) shows the three-dimensional map, and (b) shows the intensity map.
Fig. 6
Fig. 6 Optical path for the diffraction order.
Fig. 7
Fig. 7 The −36th order of the mosaic grating with Δθx, Δθy, Δθz, and Δz. (a) shows three-dimensional map, and (b) shows the corresponding intensity map.
Fig. 8
Fig. 8 The −36th order after adjustment. (a) shows the three-dimensional map, and (b) shows the intensity map.
Fig. 9
Fig. 9 Mosaic grating. (a) shows the wavefront, and (b) shows the point spread function.

Tables (3)

Tables Icon

Table 1 Parameters of the adjustment mechanisms used for the mosaicking errors

Tables Icon

Table 2 Movement data for the adjustment mechanisms

Tables Icon

Table 3 Movement data of the adjustment mechanisms

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

G 1 = [ x 11 y 11 z 11 x 12 y 12 z 12 x 1 n y 1 n z 1 n ] .
G 2 = [ x 21 y 21 z 21 x 22 y 22 z 22 x 2 n y 2 n z 2 n ] .
G 2 i T = R z ( Δ θ z ) R y ( Δ θ y ) R x ( Δ θ x ) { G 1 i T + [ Δ x + L 0 Δ z ] } .
{ G 1 i = [ x 1 i , y 1 i , z 1 i ] G 2 i = [ x 2 i , y 2 i , z 2 i ] .
R x ( θ ) = [ 1 0 0 0 cos θ sin θ 0 sin θ cos θ ] , R y ( θ ) = [ cos θ 0 sin θ 0 1 0 sin θ 0 cos θ ] , R z ( θ ) = [ cos θ sin θ 0 sin θ cos θ 0 0 0 1 ] .
Δ 1 = [ u 11 v 11 w 11 u 12 v 12 w 12 u 1 n v 1 n w 1 n ] .
Δ 2 = [ u 21 v 21 w 21 u 22 v 22 w 22 u 2 n v 2 n w 2 n ] .
{ Δ 1 i T = [ R y ( θ i ) + R y ( θ k ) ] G 1 i T Δ 2 i T = [ R y ( θ i ) + R y ( θ k ) ] G 2 i T .
{ Δ 1 i = [ u 1 i , v 1 i , w 1 i ] Δ 2 i = [ u 2 i , v 2 i , w 2 i ] .
d ( sin θ i + sin θ k ) = m λ .
Δ 1 i T ( m ) = [ x 1 i ( cos θ i + cos θ k ) z 1 i m λ d 2 y 1 i x 1 i m λ d + z 1 i ( cos θ i + cos θ k ) ] .
Δ 2 i T ( m ) = [ ( x 1 i + Δ x + y 1 i Δ θ z ) ( cos θ i + cos θ k ) ( z 1 i + x 1 i Δ θ y y 1 i Δ θ x + Δ z ) m λ d 2 ( y 1 i x 1 i Δ θ z ) ( x 1 i + Δ x + y 1 i Δ θ z ) m λ d + ( z 1 i + x 1 i Δ θ y y 1 i Δ θ x + Δ z ) ( cos θ i + cos θ k ) ] .
Δ 2 i T ( m ) = [ x 1 i ( cos θ i + cos θ k ) z 1 i m λ d 2 y 1 i ( x 1 i + Δ x + y 1 i Δ θ z ) m λ d + ( z 1 i + x 1 i Δ θ y y 1 i Δ θ x + Δ z ) ( cos θ i + cos θ k ) ] .
Δ 1 i T ( 0 ) = [ x 1 i ( cos θ i + cos θ k ) 2 y 1 i z 1 i ( cos θ i + cos θ k ) ] .
Δ 2 i T ( 0 ) = [ x 1 i ( cos θ i + cos θ k ) 2 y 1 i ( z 1 i + x 1 i Δ θ y y 1 i Δ θ x + Δ z ) ( cos θ i + cos θ k ) ] .
w = a u + b v + c .
S = t [ w t ( a u t + b v t + c ) ] 2 .
[ u t 2 u t v t u t u t v t v t 2 v i u t v t 1 ] [ a b c ] = [ u t w t v t w t w t ] .
{ w 1 = a 10 u 1 + b 10 v 1 + c 10 w 2 = a 20 u 2 + b 20 v 2 + c 20 .
{ G 1 : ( cos θ i + cos θ k ) z 1 i = a 10 ( cos θ i + cos θ k ) x 1 i + 2 b 10 y 1 i + c 10 G 2 : ( cos θ i + cos θ k ) z 2 i = a 20 ( cos θ i + cos θ k ) x 2 i + 2 b 20 y 2 i + c 20 .
{ n g 10 = [ a 10 , 2 b 10 ( cos θ i + cos θ k ) , 1 ] n g 20 = [ a 20 , 2 b 20 ( cos θ i + cos θ k ) , 1 ] .
n g 10 T = R x ( Δ θ x ) R y ( Δ θ y ) n g 20 T .
Δ z = c 10 c 20 cos θ i + cos θ k .
{ w 1 = a 1 m u 1 + b 1 m v 1 + c 1 m w 2 = a 2 m u 2 + b 2 m v 2 + c 2 m .
{ G 1 : x 1 i m λ d + z 1 i ( cos θ i + cos θ k ) = a 1 m [ x 1 i ( cos θ i + cos θ k ) z 1 i m λ d ] + 2 b 1 m y 1 i + c 1 m G 2 : x 2 i m λ d + z 2 i ( cos θ i + cos θ k ) = a 2 m [ x 2 i ( cos θ i + cos θ k ) z 2 i m λ d ] + 2 b 2 m y 2 i + c 2 m .
{ n g 1 m = [ a 1 m ( cos θ i + cos θ k ) m λ d ( cos θ i + cos θ k ) + a 1 m m λ d , 2 b 1 m ( cos θ i + cos θ k ) + a 1 m m λ d , 1 ] n g 2 m = [ a 2 m ( cos θ i + cos θ k ) m λ d ( cos θ i + cos θ k ) + a 2 m m λ d , 2 b 2 m ( cos θ i + cos θ k ) + a 2 m m λ d , 1 ] .
n g 1 m T = R x ( Δ θ x ) R y ( Δ θ y ) n g 2 m T .
{ Δ θ z = Δ θ x ( cos θ i + cos θ k ) + 2 b 1 m m λ d 2 b 2 m [ ( cos θ i + cos θ k ) + a 1 m m λ d ] ( cos θ i + cos θ k ) m λ d + a 2 m ( m λ d ) 2 Δ x = c 2 m [ ( cos θ i + cos θ k ) + a 1 m m λ d ] ( cos θ i + cos θ k ) m λ d + a 2 m ( m λ d ) 2 c 1 m + Δ z ( cos θ i + cos θ k ) m λ d .
{ Δ θ x = 88.7381 μ r a d Δ θ y = 43.6011 μ r a d Δ z = 1.0202 μ m .
{ Δ θ x = 3.0351 μ r a d Δ θ y = 1.6051 μ r a d Δ z = 8.3156 n m .
{ Δ θ x = 6.2789 μ r a d Δ θ y = 20.5483 μ r a d Δ θ z = 16.9392 μ r a d Δ x = 148.5671 n m .
{ Δ θ x = 2.6308 μ r a d Δ θ y = 0.6424 μ r a d Δ θ z = 3.2350 μ r a d Δ x = 20.4267 n m Δ z = 8.3156 n m .

Metrics