Abstract

Anomalous optical properties of microscopically inhomogeneous dielectric films placed on a thick metal sublayer are investigated. We study the reflection, scattering, and absorption of the coherent electromagnetic radiation as a function of the incidence angle. Computer simulations show the existence of the incidence angle of the laser beam when the scattering and absorption increase simultaneously for the s-polarization so that almost 60% of the incident light goes in the scattering channel. The critical angle corresponds to the excitation of Fabry-Perot mode. The effect makes it possible to manipulate the reflection from the metafilms.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation

José Ricardo Arias-González and Manuel Nieto-Vesperinas
J. Opt. Soc. Am. A 18(3) 657-665 (2001)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Hovenier, C. V. Van der Mee, and H. Domke, Transfer of polarized light in planetary atmospheres: basic concepts and practical methods, vol. 318 (Springer Science & Business Media, 2014).
  2. S. Chandrasekhar, Radiative transfer (Courier Corporation, 2013).
  3. E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-crystalline Solids 354(19-25), 2488–2491 (2008).
    [Crossref]
  4. C. Bordier, C. Andraud, E. Charron, and J. Lafait, “Radiative transfer model with polarization effects applied to organic matter,” Physica B 394(2), 301–305 (2007).
    [Crossref]
  5. R. Garcia and C. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 36(5), 401–423 (1986).
    [Crossref]
  6. R. Garcia, “Radiative transfer with polarization in a multi-layer medium subject to Fresnel boundary and interface conditions,” J. Quant. Spectrosc. Radiat. Transf. 115, 28–45 (2013).
    [Crossref]
  7. B. Aduev, D. Nurmukhametov, G. Belokurov, A. Zvekov, A. Kalenskii, A. Nikitin, and I. Y. Liskov, “Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite,” Tech. Phys. 59(9), 1387–1392 (2014).
    [Crossref]
  8. A. S. Ramírez-Duverger and R. García-Llamas, “Light scattering from a multimode waveguide of planarmetallic walls,” Opt. Commun. 227(4-6), 227–235 (2003).
    [Crossref]
  9. V. Celli, A. A. Maradudin, A. Marvin, and A. R. McGurn, “Some aspects of light scattering from a randomly rough metal surface,” J. Opt. Soc. Am. A 2(12), 2225–2239 (1985).
    [Crossref]
  10. M. Nieto-Vesperinas and J. M. Soto-Crespo, “Monte Carlo simulations for scattering of electromagnetic waves from perfectly conductive random rough surfaces,” Opt. Lett. 12(12), 979–981 (1987).
    [Crossref] [PubMed]
  11. J. A. Sánchez-Gil, A. A. Maradudin, J. Q. Lu, V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Scattering of electromagnetic waves from a bounded medium with a random surface,” Phys. Rev. B Condens. Matter 50(20), 15353–15368 (1994).
    [Crossref] [PubMed]
  12. R. Garcia and C. Siewert, “A simplified implementation of the discrete-ordinates method for a class of problems in radiative transfer with polarization,” J. Quant. Spectrosc. Radiat. Transf. 112(18), 2801–2813 (2011).
    [Crossref]
  13. A. A. Zvekov, A. V. e. Kalenskii, A. P. Nikitin, and B. P. Aduev, “Radiance distribution simulation in a transparent medium with fresnel boundaries containing aluminum nanoparticles,” Comput. Opt. 38(4), 749–756 (2014).
    [Crossref]
  14. A. Ishimaru, Wave propagation and scattering in random media (Academic, 1978).
  15. X. Ben, H.-L. Yi, and H.-P. Tan, “Polarized radiative transfer in an arbitrary multilayer semitransparent medium,” Appl. Opt. 53(7), 1427–1441 (2014).
    [Crossref] [PubMed]
  16. C. K. Hayakawa, J. Spanier, and V. Venugopalan, “Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media,” J. Opt. Soc. Am. A 31(2), 301–311 (2014).
    [Crossref] [PubMed]
  17. P. Sheng, Introduction to wave scattering, localization and mesoscopic phenomena, vol. 88 (Springer Science & Business Media, 2006).
  18. R. Garcia, C. Siewert, and A. Yacout, “On the use of fresnel boundary and interface conditions in radiative-transfer calculations for multilayered media,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 752–769 (2008).
    [Crossref]
  19. J. Caron, C. Andraud, and J. Lafait, “Radiative transfer calculations in multilayer systems with smooth or rough interfaces,” J. Mod. Opt. 51(4), 575–595 (2004).
    [Crossref]
  20. R. Elaloufi, S. Arridge, R. Pierrat, and R. Carminati, “Light propagation in multilayered scattering media beyond the diffusive regime,” Appl. Opt. 46(13), 2528–2539 (2007).
    [Crossref] [PubMed]
  21. Z. L. Wang, H. Ogura, and N. Takahashi, “Enhanced scattering from a planar waveguide structure with a slightly rough boundary,” Phys. Rev. B Condens. Matter 52(8), 6027–6041 (1995).
    [Crossref] [PubMed]
  22. T. Kawanishi, H. Ogura, and Z. Wang, “Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering,” Waves Random Media 7(3), 351–384 (1997).
    [Crossref]
  23. J. Sánchez-Gil and M. Nieto-Vesperinas, “Light scattering from random rough dielectric surfaces,” J. Opt. Soc. Am. A 8(8), 1270–1286 (1991).
    [Crossref]
  24. J. Soto-Crespo, M. Nieto-Vesperinas, and A. Friberg, “Scattering from slightly rough random surfaces: a detailed study on the validity of the small perturbation method,” J. Opt. Soc. Am. A 7(7), 1185–1201 (1990).
    [Crossref]
  25. N. Déchamps, N. de Beaucoudrey, C. Bourlier, and S. Toutain, “Fast numerical method for electromagnetic scattering by rough layered interfaces: Propagation-inside-layer expansion method,” J. Opt. Soc. Am. A 23(2), 359–369 (2006).
    [Crossref] [PubMed]
  26. A. A. Maradudin, E. R. Méndez, and T. Michel, “Backscattering effects in the elastic scattering of p-polarized light from a large-amplitude random metallic grating,” Opt. Lett. 14(3), 151–153 (1989).
    [Crossref] [PubMed]
  27. I. Simonsen and A. A. Maradudin, “Numerical simulation of electromagnetic wave scattering from planar dielectric films deposited on rough perfectly conducting substrates,” Opt. Commun. 162(1-3), 99–111 (1999).
    [Crossref]
  28. Ø. S. Hetland, A. A. Maradudin, T. Nordam, and I. Simonsen, “Numerical studies of the scattering of light from a two-dimensional randomly rough interface between two dielectric media,” Phys. Rev. A (Coll. Park) 93(5), 053819 (2016).
    [Crossref]
  29. E. E. Gorodnichev, S. L. Dudarev, D. Rogozkin, and M. I. Ryazanov, “Coherent effects in backscattering of waves from a medium with random inhomogeneities,” Sov. Phys. JETP 66, 938 (1987).
  30. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B Condens. Matter 38(4), 2297–2311 (1988).
    [Crossref] [PubMed]
  31. E. E. Gorodnichev, S. L. Dudarev, D. B. Rogozkin, and M. I. Ryazanov, “Nature of anomalous x-ray reflection from a surface,” Sov.Phys. JETP Lett. 48, 147 (1988).
  32. Ø. S. Hetland, A. A. Maradudin, T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical studies of the transmission of light through a two-dimensional randomly rough interface,” Phys. Rev. A (Coll. Park) 95(4), 043808 (2017).
    [Crossref]
  33. F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 58(23), 15897–15903 (1998).
    [Crossref]
  34. M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
    [Crossref]
  35. E. Chaikina, P. Negrete-Regagnon, V. Ruiz-Cortés, and E. Méndez, “Measurements of the hemispherical scattering distribution function of rough dielectric surfaces,” Opt. Commun. 208(4-6), 215–221 (2002).
    [Crossref]
  36. I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
    [Crossref]
  37. E. Khawaja, S. Durrani, and M. Al-Kuhaili, “Determination of average refractive index of thin CeO2 films with large inhomogeneities,” J. Phys. D Appl. Phys. 36(5), 545–551 (2003).
    [Crossref]
  38. I. Hodgkinson, S. Cloughley, Q. H. Wu, and S. Kassam, “Anisotropic scatter patterns and anomalous birefringence of obliquely deposited cerium oxide films,” Appl. Opt. 35(28), 5563–5568 (1996).
    [Crossref] [PubMed]
  39. R. Bueno, J. Martinez-Duart, M. Hernandez-Velez, and L. Vazquez, “Optical and structural characterization of rf sputtered CeO2 thin films,” J. Mater. Sci. 32(7), 1861–1865 (1997).
    [Crossref]
  40. M. Anwar, S. Kumar, F. Ahmed, N. Arshi, Y. J. Seo, C. G. Lee, and B. H. Koo, “Study of nanocrystalline ceria thin films deposited by e-beam technique,” Curr. Appl. Phys. 11(1), S301–S304 (2011).
    [Crossref]
  41. S. Kanakaraju, S. Mohan, and A. Sood, “Optical and structural properties of reactive ion beam sputter deposited CeO2 films,” Thin Solid Films 305(1-2), 191–195 (1997).
    [Crossref]
  42. C. Tian, Y. Du, and S.-W. Chan, “Preparation and microstructural study of CeO2 thin films,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 15(1), 85–92 (1997).
    [Crossref]
  43. A. Cavallaro, F. Sandiumenge, J. Gazquez, T. Puig, X. Obradors, J. Arbiol, and H. C. Freyhardt, “Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition,” Adv. Funct. Mater. 16(10), 1363–1372 (2006).
    [Crossref]
  44. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  45. P. Yeh, Optical waves in layered media, vol. 61 (Wiley-Interscience, 2005).
  46. W. W. Salisbury, “Absorbent body for electromagnetic waves,” US Patent 2,599,944, (1952).
  47. R. Puzko and A. Merzlikin, “To the analyticity of the effective refractive index,” J. Commun. Technol. Electron. 61(12), 1368–1373 (2016).
    [Crossref]
  48. R. Puzko and A. Merzlikin, “Analytical properties of the effective refractive index,” Opt. Commun. 383, 323–329 (2017).
    [Crossref]
  49. C.-T. Tai, Dyadic Green functions in electromagnetic theory (IEEE, 1994).
  50. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).
  51. H. Thorkild and A. D. Yaghjian, Plane-wave theory of time-domain fields: near-field scanning applications (IEEE, 1999).

2017 (2)

Ø. S. Hetland, A. A. Maradudin, T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical studies of the transmission of light through a two-dimensional randomly rough interface,” Phys. Rev. A (Coll. Park) 95(4), 043808 (2017).
[Crossref]

R. Puzko and A. Merzlikin, “Analytical properties of the effective refractive index,” Opt. Commun. 383, 323–329 (2017).
[Crossref]

2016 (2)

R. Puzko and A. Merzlikin, “To the analyticity of the effective refractive index,” J. Commun. Technol. Electron. 61(12), 1368–1373 (2016).
[Crossref]

Ø. S. Hetland, A. A. Maradudin, T. Nordam, and I. Simonsen, “Numerical studies of the scattering of light from a two-dimensional randomly rough interface between two dielectric media,” Phys. Rev. A (Coll. Park) 93(5), 053819 (2016).
[Crossref]

2014 (5)

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

B. Aduev, D. Nurmukhametov, G. Belokurov, A. Zvekov, A. Kalenskii, A. Nikitin, and I. Y. Liskov, “Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite,” Tech. Phys. 59(9), 1387–1392 (2014).
[Crossref]

A. A. Zvekov, A. V. e. Kalenskii, A. P. Nikitin, and B. P. Aduev, “Radiance distribution simulation in a transparent medium with fresnel boundaries containing aluminum nanoparticles,” Comput. Opt. 38(4), 749–756 (2014).
[Crossref]

X. Ben, H.-L. Yi, and H.-P. Tan, “Polarized radiative transfer in an arbitrary multilayer semitransparent medium,” Appl. Opt. 53(7), 1427–1441 (2014).
[Crossref] [PubMed]

C. K. Hayakawa, J. Spanier, and V. Venugopalan, “Comparative analysis of discrete and continuous absorption weighting estimators used in Monte Carlo simulations of radiative transport in turbid media,” J. Opt. Soc. Am. A 31(2), 301–311 (2014).
[Crossref] [PubMed]

2013 (1)

R. Garcia, “Radiative transfer with polarization in a multi-layer medium subject to Fresnel boundary and interface conditions,” J. Quant. Spectrosc. Radiat. Transf. 115, 28–45 (2013).
[Crossref]

2011 (2)

R. Garcia and C. Siewert, “A simplified implementation of the discrete-ordinates method for a class of problems in radiative transfer with polarization,” J. Quant. Spectrosc. Radiat. Transf. 112(18), 2801–2813 (2011).
[Crossref]

M. Anwar, S. Kumar, F. Ahmed, N. Arshi, Y. J. Seo, C. G. Lee, and B. H. Koo, “Study of nanocrystalline ceria thin films deposited by e-beam technique,” Curr. Appl. Phys. 11(1), S301–S304 (2011).
[Crossref]

2008 (2)

E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-crystalline Solids 354(19-25), 2488–2491 (2008).
[Crossref]

R. Garcia, C. Siewert, and A. Yacout, “On the use of fresnel boundary and interface conditions in radiative-transfer calculations for multilayered media,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 752–769 (2008).
[Crossref]

2007 (2)

R. Elaloufi, S. Arridge, R. Pierrat, and R. Carminati, “Light propagation in multilayered scattering media beyond the diffusive regime,” Appl. Opt. 46(13), 2528–2539 (2007).
[Crossref] [PubMed]

C. Bordier, C. Andraud, E. Charron, and J. Lafait, “Radiative transfer model with polarization effects applied to organic matter,” Physica B 394(2), 301–305 (2007).
[Crossref]

2006 (2)

N. Déchamps, N. de Beaucoudrey, C. Bourlier, and S. Toutain, “Fast numerical method for electromagnetic scattering by rough layered interfaces: Propagation-inside-layer expansion method,” J. Opt. Soc. Am. A 23(2), 359–369 (2006).
[Crossref] [PubMed]

A. Cavallaro, F. Sandiumenge, J. Gazquez, T. Puig, X. Obradors, J. Arbiol, and H. C. Freyhardt, “Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition,” Adv. Funct. Mater. 16(10), 1363–1372 (2006).
[Crossref]

2004 (1)

J. Caron, C. Andraud, and J. Lafait, “Radiative transfer calculations in multilayer systems with smooth or rough interfaces,” J. Mod. Opt. 51(4), 575–595 (2004).
[Crossref]

2003 (2)

A. S. Ramírez-Duverger and R. García-Llamas, “Light scattering from a multimode waveguide of planarmetallic walls,” Opt. Commun. 227(4-6), 227–235 (2003).
[Crossref]

E. Khawaja, S. Durrani, and M. Al-Kuhaili, “Determination of average refractive index of thin CeO2 films with large inhomogeneities,” J. Phys. D Appl. Phys. 36(5), 545–551 (2003).
[Crossref]

2002 (1)

E. Chaikina, P. Negrete-Regagnon, V. Ruiz-Cortés, and E. Méndez, “Measurements of the hemispherical scattering distribution function of rough dielectric surfaces,” Opt. Commun. 208(4-6), 215–221 (2002).
[Crossref]

2001 (1)

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

1999 (1)

I. Simonsen and A. A. Maradudin, “Numerical simulation of electromagnetic wave scattering from planar dielectric films deposited on rough perfectly conducting substrates,” Opt. Commun. 162(1-3), 99–111 (1999).
[Crossref]

1998 (2)

F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 58(23), 15897–15903 (1998).
[Crossref]

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[Crossref] [PubMed]

1997 (4)

R. Bueno, J. Martinez-Duart, M. Hernandez-Velez, and L. Vazquez, “Optical and structural characterization of rf sputtered CeO2 thin films,” J. Mater. Sci. 32(7), 1861–1865 (1997).
[Crossref]

S. Kanakaraju, S. Mohan, and A. Sood, “Optical and structural properties of reactive ion beam sputter deposited CeO2 films,” Thin Solid Films 305(1-2), 191–195 (1997).
[Crossref]

C. Tian, Y. Du, and S.-W. Chan, “Preparation and microstructural study of CeO2 thin films,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 15(1), 85–92 (1997).
[Crossref]

T. Kawanishi, H. Ogura, and Z. Wang, “Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering,” Waves Random Media 7(3), 351–384 (1997).
[Crossref]

1996 (1)

1995 (1)

Z. L. Wang, H. Ogura, and N. Takahashi, “Enhanced scattering from a planar waveguide structure with a slightly rough boundary,” Phys. Rev. B Condens. Matter 52(8), 6027–6041 (1995).
[Crossref] [PubMed]

1994 (1)

J. A. Sánchez-Gil, A. A. Maradudin, J. Q. Lu, V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Scattering of electromagnetic waves from a bounded medium with a random surface,” Phys. Rev. B Condens. Matter 50(20), 15353–15368 (1994).
[Crossref] [PubMed]

1991 (1)

1990 (1)

1989 (1)

1988 (2)

S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B Condens. Matter 38(4), 2297–2311 (1988).
[Crossref] [PubMed]

E. E. Gorodnichev, S. L. Dudarev, D. B. Rogozkin, and M. I. Ryazanov, “Nature of anomalous x-ray reflection from a surface,” Sov.Phys. JETP Lett. 48, 147 (1988).

1987 (2)

E. E. Gorodnichev, S. L. Dudarev, D. Rogozkin, and M. I. Ryazanov, “Coherent effects in backscattering of waves from a medium with random inhomogeneities,” Sov. Phys. JETP 66, 938 (1987).

M. Nieto-Vesperinas and J. M. Soto-Crespo, “Monte Carlo simulations for scattering of electromagnetic waves from perfectly conductive random rough surfaces,” Opt. Lett. 12(12), 979–981 (1987).
[Crossref] [PubMed]

1986 (1)

R. Garcia and C. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 36(5), 401–423 (1986).
[Crossref]

1985 (1)

Aduev, B.

B. Aduev, D. Nurmukhametov, G. Belokurov, A. Zvekov, A. Kalenskii, A. Nikitin, and I. Y. Liskov, “Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite,” Tech. Phys. 59(9), 1387–1392 (2014).
[Crossref]

Aduev, B. P.

A. A. Zvekov, A. V. e. Kalenskii, A. P. Nikitin, and B. P. Aduev, “Radiance distribution simulation in a transparent medium with fresnel boundaries containing aluminum nanoparticles,” Comput. Opt. 38(4), 749–756 (2014).
[Crossref]

Afanasiev, K.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Ahmed, F.

M. Anwar, S. Kumar, F. Ahmed, N. Arshi, Y. J. Seo, C. G. Lee, and B. H. Koo, “Study of nanocrystalline ceria thin films deposited by e-beam technique,” Curr. Appl. Phys. 11(1), S301–S304 (2011).
[Crossref]

Al-Kuhaili, M.

E. Khawaja, S. Durrani, and M. Al-Kuhaili, “Determination of average refractive index of thin CeO2 films with large inhomogeneities,” J. Phys. D Appl. Phys. 36(5), 545–551 (2003).
[Crossref]

Amitonov, S.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Andraud, C.

C. Bordier, C. Andraud, E. Charron, and J. Lafait, “Radiative transfer model with polarization effects applied to organic matter,” Physica B 394(2), 301–305 (2007).
[Crossref]

J. Caron, C. Andraud, and J. Lafait, “Radiative transfer calculations in multilayer systems with smooth or rough interfaces,” J. Mod. Opt. 51(4), 575–595 (2004).
[Crossref]

Anwar, M.

M. Anwar, S. Kumar, F. Ahmed, N. Arshi, Y. J. Seo, C. G. Lee, and B. H. Koo, “Study of nanocrystalline ceria thin films deposited by e-beam technique,” Curr. Appl. Phys. 11(1), S301–S304 (2011).
[Crossref]

Arbiol, J.

A. Cavallaro, F. Sandiumenge, J. Gazquez, T. Puig, X. Obradors, J. Arbiol, and H. C. Freyhardt, “Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition,” Adv. Funct. Mater. 16(10), 1363–1372 (2006).
[Crossref]

Arridge, S.

Arshi, N.

M. Anwar, S. Kumar, F. Ahmed, N. Arshi, Y. J. Seo, C. G. Lee, and B. H. Koo, “Study of nanocrystalline ceria thin films deposited by e-beam technique,” Curr. Appl. Phys. 11(1), S301–S304 (2011).
[Crossref]

Belokurov, G.

B. Aduev, D. Nurmukhametov, G. Belokurov, A. Zvekov, A. Kalenskii, A. Nikitin, and I. Y. Liskov, “Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite,” Tech. Phys. 59(9), 1387–1392 (2014).
[Crossref]

Ben, X.

Blacher, S.

F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 58(23), 15897–15903 (1998).
[Crossref]

Boginskaya, I.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Bordier, C.

C. Bordier, C. Andraud, E. Charron, and J. Lafait, “Radiative transfer model with polarization effects applied to organic matter,” Physica B 394(2), 301–305 (2007).
[Crossref]

Bourlier, C.

Breit, M.

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

Brouers, F.

F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 58(23), 15897–15903 (1998).
[Crossref]

Budashov, I.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Bueno, R.

R. Bueno, J. Martinez-Duart, M. Hernandez-Velez, and L. Vazquez, “Optical and structural characterization of rf sputtered CeO2 thin films,” J. Mater. Sci. 32(7), 1861–1865 (1997).
[Crossref]

Carius, R.

E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-crystalline Solids 354(19-25), 2488–2491 (2008).
[Crossref]

Carminati, R.

Caron, J.

J. Caron, C. Andraud, and J. Lafait, “Radiative transfer calculations in multilayer systems with smooth or rough interfaces,” J. Mod. Opt. 51(4), 575–595 (2004).
[Crossref]

Cavallaro, A.

A. Cavallaro, F. Sandiumenge, J. Gazquez, T. Puig, X. Obradors, J. Arbiol, and H. C. Freyhardt, “Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition,” Adv. Funct. Mater. 16(10), 1363–1372 (2006).
[Crossref]

Celli, V.

Chaikina, E.

E. Chaikina, P. Negrete-Regagnon, V. Ruiz-Cortés, and E. Méndez, “Measurements of the hemispherical scattering distribution function of rough dielectric surfaces,” Opt. Commun. 208(4-6), 215–221 (2002).
[Crossref]

Chan, S.-W.

C. Tian, Y. Du, and S.-W. Chan, “Preparation and microstructural study of CeO2 thin films,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 15(1), 85–92 (1997).
[Crossref]

Charron, E.

C. Bordier, C. Andraud, E. Charron, and J. Lafait, “Radiative transfer model with polarization effects applied to organic matter,” Physica B 394(2), 301–305 (2007).
[Crossref]

Cloughley, S.

de Beaucoudrey, N.

Déchamps, N.

Djurišic, A. B.

Du, Y.

C. Tian, Y. Du, and S.-W. Chan, “Preparation and microstructural study of CeO2 thin films,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 15(1), 85–92 (1997).
[Crossref]

Dudarev, S. L.

E. E. Gorodnichev, S. L. Dudarev, D. B. Rogozkin, and M. I. Ryazanov, “Nature of anomalous x-ray reflection from a surface,” Sov.Phys. JETP Lett. 48, 147 (1988).

E. E. Gorodnichev, S. L. Dudarev, D. Rogozkin, and M. I. Ryazanov, “Coherent effects in backscattering of waves from a medium with random inhomogeneities,” Sov. Phys. JETP 66, 938 (1987).

Durrani, S.

E. Khawaja, S. Durrani, and M. Al-Kuhaili, “Determination of average refractive index of thin CeO2 films with large inhomogeneities,” J. Phys. D Appl. Phys. 36(5), 545–551 (2003).
[Crossref]

Elaloufi, R.

Elazar, J. M.

Feldmann, J.

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

Freilikher, V. D.

J. A. Sánchez-Gil, A. A. Maradudin, J. Q. Lu, V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Scattering of electromagnetic waves from a bounded medium with a random surface,” Phys. Rev. B Condens. Matter 50(20), 15353–15368 (1994).
[Crossref] [PubMed]

Freyhardt, H. C.

A. Cavallaro, F. Sandiumenge, J. Gazquez, T. Puig, X. Obradors, J. Arbiol, and H. C. Freyhardt, “Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition,” Adv. Funct. Mater. 16(10), 1363–1372 (2006).
[Crossref]

Friberg, A.

Gadenne, P.

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

Garcia, R.

R. Garcia, “Radiative transfer with polarization in a multi-layer medium subject to Fresnel boundary and interface conditions,” J. Quant. Spectrosc. Radiat. Transf. 115, 28–45 (2013).
[Crossref]

R. Garcia and C. Siewert, “A simplified implementation of the discrete-ordinates method for a class of problems in radiative transfer with polarization,” J. Quant. Spectrosc. Radiat. Transf. 112(18), 2801–2813 (2011).
[Crossref]

R. Garcia, C. Siewert, and A. Yacout, “On the use of fresnel boundary and interface conditions in radiative-transfer calculations for multilayered media,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 752–769 (2008).
[Crossref]

R. Garcia and C. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 36(5), 401–423 (1986).
[Crossref]

García-Llamas, R.

A. S. Ramírez-Duverger and R. García-Llamas, “Light scattering from a multimode waveguide of planarmetallic walls,” Opt. Commun. 227(4-6), 227–235 (2003).
[Crossref]

Garoff, S.

S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B Condens. Matter 38(4), 2297–2311 (1988).
[Crossref] [PubMed]

Gazquez, J.

A. Cavallaro, F. Sandiumenge, J. Gazquez, T. Puig, X. Obradors, J. Arbiol, and H. C. Freyhardt, “Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition,” Adv. Funct. Mater. 16(10), 1363–1372 (2006).
[Crossref]

Gorodnichev, E. E.

E. E. Gorodnichev, S. L. Dudarev, D. B. Rogozkin, and M. I. Ryazanov, “Nature of anomalous x-ray reflection from a surface,” Sov.Phys. JETP Lett. 48, 147 (1988).

E. E. Gorodnichev, S. L. Dudarev, D. Rogozkin, and M. I. Ryazanov, “Coherent effects in backscattering of waves from a medium with random inhomogeneities,” Sov. Phys. JETP 66, 938 (1987).

Grésillon, S.

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

Hayakawa, C. K.

Hernandez-Velez, M.

R. Bueno, J. Martinez-Duart, M. Hernandez-Velez, and L. Vazquez, “Optical and structural characterization of rf sputtered CeO2 thin films,” J. Mater. Sci. 32(7), 1861–1865 (1997).
[Crossref]

Hetland, Ø. S.

Ø. S. Hetland, A. A. Maradudin, T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical studies of the transmission of light through a two-dimensional randomly rough interface,” Phys. Rev. A (Coll. Park) 95(4), 043808 (2017).
[Crossref]

Ø. S. Hetland, A. A. Maradudin, T. Nordam, and I. Simonsen, “Numerical studies of the scattering of light from a two-dimensional randomly rough interface between two dielectric media,” Phys. Rev. A (Coll. Park) 93(5), 053819 (2016).
[Crossref]

Hodgkinson, I.

Kalenskii, A.

B. Aduev, D. Nurmukhametov, G. Belokurov, A. Zvekov, A. Kalenskii, A. Nikitin, and I. Y. Liskov, “Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite,” Tech. Phys. 59(9), 1387–1392 (2014).
[Crossref]

Kalenskii, A. V. e.

A. A. Zvekov, A. V. e. Kalenskii, A. P. Nikitin, and B. P. Aduev, “Radiance distribution simulation in a transparent medium with fresnel boundaries containing aluminum nanoparticles,” Comput. Opt. 38(4), 749–756 (2014).
[Crossref]

Kanakaraju, S.

S. Kanakaraju, S. Mohan, and A. Sood, “Optical and structural properties of reactive ion beam sputter deposited CeO2 films,” Thin Solid Films 305(1-2), 191–195 (1997).
[Crossref]

Kassam, S.

Kawanishi, T.

T. Kawanishi, H. Ogura, and Z. Wang, “Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering,” Waves Random Media 7(3), 351–384 (1997).
[Crossref]

Khawaja, E.

E. Khawaja, S. Durrani, and M. Al-Kuhaili, “Determination of average refractive index of thin CeO2 films with large inhomogeneities,” J. Phys. D Appl. Phys. 36(5), 545–551 (2003).
[Crossref]

Koo, B. H.

M. Anwar, S. Kumar, F. Ahmed, N. Arshi, Y. J. Seo, C. G. Lee, and B. H. Koo, “Study of nanocrystalline ceria thin films deposited by e-beam technique,” Curr. Appl. Phys. 11(1), S301–S304 (2011).
[Crossref]

Kumar, S.

M. Anwar, S. Kumar, F. Ahmed, N. Arshi, Y. J. Seo, C. G. Lee, and B. H. Koo, “Study of nanocrystalline ceria thin films deposited by e-beam technique,” Curr. Appl. Phys. 11(1), S301–S304 (2011).
[Crossref]

Kurochkin, I.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Lafait, J.

C. Bordier, C. Andraud, E. Charron, and J. Lafait, “Radiative transfer model with polarization effects applied to organic matter,” Physica B 394(2), 301–305 (2007).
[Crossref]

J. Caron, C. Andraud, and J. Lafait, “Radiative transfer calculations in multilayer systems with smooth or rough interfaces,” J. Mod. Opt. 51(4), 575–595 (2004).
[Crossref]

Lagarkov, A.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Lee, C. G.

M. Anwar, S. Kumar, F. Ahmed, N. Arshi, Y. J. Seo, C. G. Lee, and B. H. Koo, “Study of nanocrystalline ceria thin films deposited by e-beam technique,” Curr. Appl. Phys. 11(1), S301–S304 (2011).
[Crossref]

Letnes, P. A.

Ø. S. Hetland, A. A. Maradudin, T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical studies of the transmission of light through a two-dimensional randomly rough interface,” Phys. Rev. A (Coll. Park) 95(4), 043808 (2017).
[Crossref]

Liskov, I. Y.

B. Aduev, D. Nurmukhametov, G. Belokurov, A. Zvekov, A. Kalenskii, A. Nikitin, and I. Y. Liskov, “Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite,” Tech. Phys. 59(9), 1387–1392 (2014).
[Crossref]

Lu, J. Q.

J. A. Sánchez-Gil, A. A. Maradudin, J. Q. Lu, V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Scattering of electromagnetic waves from a bounded medium with a random surface,” Phys. Rev. B Condens. Matter 50(20), 15353–15368 (1994).
[Crossref] [PubMed]

Luo, P.

E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-crystalline Solids 354(19-25), 2488–2491 (2008).
[Crossref]

Majewski, M. L.

Maradudin, A. A.

Ø. S. Hetland, A. A. Maradudin, T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical studies of the transmission of light through a two-dimensional randomly rough interface,” Phys. Rev. A (Coll. Park) 95(4), 043808 (2017).
[Crossref]

Ø. S. Hetland, A. A. Maradudin, T. Nordam, and I. Simonsen, “Numerical studies of the scattering of light from a two-dimensional randomly rough interface between two dielectric media,” Phys. Rev. A (Coll. Park) 93(5), 053819 (2016).
[Crossref]

I. Simonsen and A. A. Maradudin, “Numerical simulation of electromagnetic wave scattering from planar dielectric films deposited on rough perfectly conducting substrates,” Opt. Commun. 162(1-3), 99–111 (1999).
[Crossref]

J. A. Sánchez-Gil, A. A. Maradudin, J. Q. Lu, V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Scattering of electromagnetic waves from a bounded medium with a random surface,” Phys. Rev. B Condens. Matter 50(20), 15353–15368 (1994).
[Crossref] [PubMed]

A. A. Maradudin, E. R. Méndez, and T. Michel, “Backscattering effects in the elastic scattering of p-polarized light from a large-amplitude random metallic grating,” Opt. Lett. 14(3), 151–153 (1989).
[Crossref] [PubMed]

V. Celli, A. A. Maradudin, A. Marvin, and A. R. McGurn, “Some aspects of light scattering from a randomly rough metal surface,” J. Opt. Soc. Am. A 2(12), 2225–2239 (1985).
[Crossref]

Martinez-Duart, J.

R. Bueno, J. Martinez-Duart, M. Hernandez-Velez, and L. Vazquez, “Optical and structural characterization of rf sputtered CeO2 thin films,” J. Mater. Sci. 32(7), 1861–1865 (1997).
[Crossref]

Marvin, A.

McGurn, A. R.

Méndez, E.

E. Chaikina, P. Negrete-Regagnon, V. Ruiz-Cortés, and E. Méndez, “Measurements of the hemispherical scattering distribution function of rough dielectric surfaces,” Opt. Commun. 208(4-6), 215–221 (2002).
[Crossref]

Méndez, E. R.

Merzlikin, A.

R. Puzko and A. Merzlikin, “Analytical properties of the effective refractive index,” Opt. Commun. 383, 323–329 (2017).
[Crossref]

R. Puzko and A. Merzlikin, “To the analyticity of the effective refractive index,” J. Commun. Technol. Electron. 61(12), 1368–1373 (2016).
[Crossref]

Michel, T.

Mohan, S.

S. Kanakaraju, S. Mohan, and A. Sood, “Optical and structural properties of reactive ion beam sputter deposited CeO2 films,” Thin Solid Films 305(1-2), 191–195 (1997).
[Crossref]

Moulin, E.

E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-crystalline Solids 354(19-25), 2488–2491 (2008).
[Crossref]

Negrete-Regagnon, P.

E. Chaikina, P. Negrete-Regagnon, V. Ruiz-Cortés, and E. Méndez, “Measurements of the hemispherical scattering distribution function of rough dielectric surfaces,” Opt. Commun. 208(4-6), 215–221 (2002).
[Crossref]

Nieto-Vesperinas, M.

Nikitin, A.

B. Aduev, D. Nurmukhametov, G. Belokurov, A. Zvekov, A. Kalenskii, A. Nikitin, and I. Y. Liskov, “Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite,” Tech. Phys. 59(9), 1387–1392 (2014).
[Crossref]

Nikitin, A. P.

A. A. Zvekov, A. V. e. Kalenskii, A. P. Nikitin, and B. P. Aduev, “Radiance distribution simulation in a transparent medium with fresnel boundaries containing aluminum nanoparticles,” Comput. Opt. 38(4), 749–756 (2014).
[Crossref]

Nordam, T.

Ø. S. Hetland, A. A. Maradudin, T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical studies of the transmission of light through a two-dimensional randomly rough interface,” Phys. Rev. A (Coll. Park) 95(4), 043808 (2017).
[Crossref]

Ø. S. Hetland, A. A. Maradudin, T. Nordam, and I. Simonsen, “Numerical studies of the scattering of light from a two-dimensional randomly rough interface between two dielectric media,” Phys. Rev. A (Coll. Park) 93(5), 053819 (2016).
[Crossref]

Nurmukhametov, D.

B. Aduev, D. Nurmukhametov, G. Belokurov, A. Zvekov, A. Kalenskii, A. Nikitin, and I. Y. Liskov, “Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite,” Tech. Phys. 59(9), 1387–1392 (2014).
[Crossref]

Obradors, X.

A. Cavallaro, F. Sandiumenge, J. Gazquez, T. Puig, X. Obradors, J. Arbiol, and H. C. Freyhardt, “Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition,” Adv. Funct. Mater. 16(10), 1363–1372 (2006).
[Crossref]

Ogura, H.

T. Kawanishi, H. Ogura, and Z. Wang, “Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering,” Waves Random Media 7(3), 351–384 (1997).
[Crossref]

Z. L. Wang, H. Ogura, and N. Takahashi, “Enhanced scattering from a planar waveguide structure with a slightly rough boundary,” Phys. Rev. B Condens. Matter 52(8), 6027–6041 (1995).
[Crossref] [PubMed]

Pierrat, R.

Podolskiy, V.

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

Puig, T.

A. Cavallaro, F. Sandiumenge, J. Gazquez, T. Puig, X. Obradors, J. Arbiol, and H. C. Freyhardt, “Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition,” Adv. Funct. Mater. 16(10), 1363–1372 (2006).
[Crossref]

Pustilnik, M.

J. A. Sánchez-Gil, A. A. Maradudin, J. Q. Lu, V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Scattering of electromagnetic waves from a bounded medium with a random surface,” Phys. Rev. B Condens. Matter 50(20), 15353–15368 (1994).
[Crossref] [PubMed]

Puzko, R.

R. Puzko and A. Merzlikin, “Analytical properties of the effective refractive index,” Opt. Commun. 383, 323–329 (2017).
[Crossref]

R. Puzko and A. Merzlikin, “To the analyticity of the effective refractive index,” J. Commun. Technol. Electron. 61(12), 1368–1373 (2016).
[Crossref]

Rakic, A. D.

Ramírez-Duverger, A. S.

A. S. Ramírez-Duverger and R. García-Llamas, “Light scattering from a multimode waveguide of planarmetallic walls,” Opt. Commun. 227(4-6), 227–235 (2003).
[Crossref]

Rivoal, J.

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

Rogozkin, D.

E. E. Gorodnichev, S. L. Dudarev, D. Rogozkin, and M. I. Ryazanov, “Coherent effects in backscattering of waves from a medium with random inhomogeneities,” Sov. Phys. JETP 66, 938 (1987).

Rogozkin, D. B.

E. E. Gorodnichev, S. L. Dudarev, D. B. Rogozkin, and M. I. Ryazanov, “Nature of anomalous x-ray reflection from a surface,” Sov.Phys. JETP Lett. 48, 147 (1988).

Royer, F.

E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-crystalline Solids 354(19-25), 2488–2491 (2008).
[Crossref]

Ruiz-Cortés, V.

E. Chaikina, P. Negrete-Regagnon, V. Ruiz-Cortés, and E. Méndez, “Measurements of the hemispherical scattering distribution function of rough dielectric surfaces,” Opt. Commun. 208(4-6), 215–221 (2002).
[Crossref]

Ryazanov, M. I.

E. E. Gorodnichev, S. L. Dudarev, D. B. Rogozkin, and M. I. Ryazanov, “Nature of anomalous x-ray reflection from a surface,” Sov.Phys. JETP Lett. 48, 147 (1988).

E. E. Gorodnichev, S. L. Dudarev, D. Rogozkin, and M. I. Ryazanov, “Coherent effects in backscattering of waves from a medium with random inhomogeneities,” Sov. Phys. JETP 66, 938 (1987).

Ryzhikov, I.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Sánchez-Gil, J.

Sánchez-Gil, J. A.

J. A. Sánchez-Gil, A. A. Maradudin, J. Q. Lu, V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Scattering of electromagnetic waves from a bounded medium with a random surface,” Phys. Rev. B Condens. Matter 50(20), 15353–15368 (1994).
[Crossref] [PubMed]

Sandiumenge, F.

A. Cavallaro, F. Sandiumenge, J. Gazquez, T. Puig, X. Obradors, J. Arbiol, and H. C. Freyhardt, “Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition,” Adv. Funct. Mater. 16(10), 1363–1372 (2006).
[Crossref]

Sarychev, A.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Sarychev, A. K.

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 58(23), 15897–15903 (1998).
[Crossref]

Sedova, M.

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Seo, Y. J.

M. Anwar, S. Kumar, F. Ahmed, N. Arshi, Y. J. Seo, C. G. Lee, and B. H. Koo, “Study of nanocrystalline ceria thin films deposited by e-beam technique,” Curr. Appl. Phys. 11(1), S301–S304 (2011).
[Crossref]

Shalaev, V. M.

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

Siewert, C.

R. Garcia and C. Siewert, “A simplified implementation of the discrete-ordinates method for a class of problems in radiative transfer with polarization,” J. Quant. Spectrosc. Radiat. Transf. 112(18), 2801–2813 (2011).
[Crossref]

R. Garcia, C. Siewert, and A. Yacout, “On the use of fresnel boundary and interface conditions in radiative-transfer calculations for multilayered media,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 752–769 (2008).
[Crossref]

R. Garcia and C. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 36(5), 401–423 (1986).
[Crossref]

Simonsen, I.

Ø. S. Hetland, A. A. Maradudin, T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical studies of the transmission of light through a two-dimensional randomly rough interface,” Phys. Rev. A (Coll. Park) 95(4), 043808 (2017).
[Crossref]

Ø. S. Hetland, A. A. Maradudin, T. Nordam, and I. Simonsen, “Numerical studies of the scattering of light from a two-dimensional randomly rough interface between two dielectric media,” Phys. Rev. A (Coll. Park) 93(5), 053819 (2016).
[Crossref]

I. Simonsen and A. A. Maradudin, “Numerical simulation of electromagnetic wave scattering from planar dielectric films deposited on rough perfectly conducting substrates,” Opt. Commun. 162(1-3), 99–111 (1999).
[Crossref]

Sinha, S. K.

S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B Condens. Matter 38(4), 2297–2311 (1988).
[Crossref] [PubMed]

Sirota, E. B.

S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B Condens. Matter 38(4), 2297–2311 (1988).
[Crossref] [PubMed]

Sood, A.

S. Kanakaraju, S. Mohan, and A. Sood, “Optical and structural properties of reactive ion beam sputter deposited CeO2 films,” Thin Solid Films 305(1-2), 191–195 (1997).
[Crossref]

Soto-Crespo, J.

Soto-Crespo, J. M.

Spanier, J.

Stanley, H. B.

S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B Condens. Matter 38(4), 2297–2311 (1988).
[Crossref] [PubMed]

Stiebig, H.

E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-crystalline Solids 354(19-25), 2488–2491 (2008).
[Crossref]

Sukmanowski, J.

E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-crystalline Solids 354(19-25), 2488–2491 (2008).
[Crossref]

Takahashi, N.

Z. L. Wang, H. Ogura, and N. Takahashi, “Enhanced scattering from a planar waveguide structure with a slightly rough boundary,” Phys. Rev. B Condens. Matter 52(8), 6027–6041 (1995).
[Crossref] [PubMed]

Tan, H.-P.

Tian, C.

C. Tian, Y. Du, and S.-W. Chan, “Preparation and microstructural study of CeO2 thin films,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 15(1), 85–92 (1997).
[Crossref]

Toutain, S.

Vazquez, L.

R. Bueno, J. Martinez-Duart, M. Hernandez-Velez, and L. Vazquez, “Optical and structural characterization of rf sputtered CeO2 thin films,” J. Mater. Sci. 32(7), 1861–1865 (1997).
[Crossref]

Venugopalan, V.

Von Plessen, G.

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

Wang, Z.

T. Kawanishi, H. Ogura, and Z. Wang, “Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering,” Waves Random Media 7(3), 351–384 (1997).
[Crossref]

Wang, Z. L.

Z. L. Wang, H. Ogura, and N. Takahashi, “Enhanced scattering from a planar waveguide structure with a slightly rough boundary,” Phys. Rev. B Condens. Matter 52(8), 6027–6041 (1995).
[Crossref] [PubMed]

Wu, Q. H.

Yacout, A.

R. Garcia, C. Siewert, and A. Yacout, “On the use of fresnel boundary and interface conditions in radiative-transfer calculations for multilayered media,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 752–769 (2008).
[Crossref]

Yi, H.-L.

Yurkevich, I.

J. A. Sánchez-Gil, A. A. Maradudin, J. Q. Lu, V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Scattering of electromagnetic waves from a bounded medium with a random surface,” Phys. Rev. B Condens. Matter 50(20), 15353–15368 (1994).
[Crossref] [PubMed]

Zvekov, A.

B. Aduev, D. Nurmukhametov, G. Belokurov, A. Zvekov, A. Kalenskii, A. Nikitin, and I. Y. Liskov, “Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite,” Tech. Phys. 59(9), 1387–1392 (2014).
[Crossref]

Zvekov, A. A.

A. A. Zvekov, A. V. e. Kalenskii, A. P. Nikitin, and B. P. Aduev, “Radiance distribution simulation in a transparent medium with fresnel boundaries containing aluminum nanoparticles,” Comput. Opt. 38(4), 749–756 (2014).
[Crossref]

Adv. Electromagn. (1)

I. Kurochkin, I. Ryzhikov, A. Sarychev, K. Afanasiev, I. Budashov, M. Sedova, I. Boginskaya, S. Amitonov, and A. Lagarkov, “New sers-active junction based on cerium dioxide facet dielectric films for biosensing,” Adv. Electromagn. 3(1), 57–60 (2014).
[Crossref]

Adv. Funct. Mater. (1)

A. Cavallaro, F. Sandiumenge, J. Gazquez, T. Puig, X. Obradors, J. Arbiol, and H. C. Freyhardt, “Growth mechanism, microstructure, and surface modification of nanostructured CeO2 films by chemical solution deposition,” Adv. Funct. Mater. 16(10), 1363–1372 (2006).
[Crossref]

Appl. Opt. (4)

Comput. Opt. (1)

A. A. Zvekov, A. V. e. Kalenskii, A. P. Nikitin, and B. P. Aduev, “Radiance distribution simulation in a transparent medium with fresnel boundaries containing aluminum nanoparticles,” Comput. Opt. 38(4), 749–756 (2014).
[Crossref]

Curr. Appl. Phys. (1)

M. Anwar, S. Kumar, F. Ahmed, N. Arshi, Y. J. Seo, C. G. Lee, and B. H. Koo, “Study of nanocrystalline ceria thin films deposited by e-beam technique,” Curr. Appl. Phys. 11(1), S301–S304 (2011).
[Crossref]

J. Commun. Technol. Electron. (1)

R. Puzko and A. Merzlikin, “To the analyticity of the effective refractive index,” J. Commun. Technol. Electron. 61(12), 1368–1373 (2016).
[Crossref]

J. Mater. Sci. (1)

R. Bueno, J. Martinez-Duart, M. Hernandez-Velez, and L. Vazquez, “Optical and structural characterization of rf sputtered CeO2 thin films,” J. Mater. Sci. 32(7), 1861–1865 (1997).
[Crossref]

J. Mod. Opt. (1)

J. Caron, C. Andraud, and J. Lafait, “Radiative transfer calculations in multilayer systems with smooth or rough interfaces,” J. Mod. Opt. 51(4), 575–595 (2004).
[Crossref]

J. Non-crystalline Solids (1)

E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, “Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles,” J. Non-crystalline Solids 354(19-25), 2488–2491 (2008).
[Crossref]

J. Opt. Soc. Am. A (5)

J. Phys. D Appl. Phys. (1)

E. Khawaja, S. Durrani, and M. Al-Kuhaili, “Determination of average refractive index of thin CeO2 films with large inhomogeneities,” J. Phys. D Appl. Phys. 36(5), 545–551 (2003).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (4)

R. Garcia and C. Siewert, “A generalized spherical harmonics solution for radiative transfer models that include polarization effects,” J. Quant. Spectrosc. Radiat. Transf. 36(5), 401–423 (1986).
[Crossref]

R. Garcia, “Radiative transfer with polarization in a multi-layer medium subject to Fresnel boundary and interface conditions,” J. Quant. Spectrosc. Radiat. Transf. 115, 28–45 (2013).
[Crossref]

R. Garcia and C. Siewert, “A simplified implementation of the discrete-ordinates method for a class of problems in radiative transfer with polarization,” J. Quant. Spectrosc. Radiat. Transf. 112(18), 2801–2813 (2011).
[Crossref]

R. Garcia, C. Siewert, and A. Yacout, “On the use of fresnel boundary and interface conditions in radiative-transfer calculations for multilayered media,” J. Quant. Spectrosc. Radiat. Transf. 109(5), 752–769 (2008).
[Crossref]

J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films (1)

C. Tian, Y. Du, and S.-W. Chan, “Preparation and microstructural study of CeO2 thin films,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 15(1), 85–92 (1997).
[Crossref]

Opt. Commun. (4)

I. Simonsen and A. A. Maradudin, “Numerical simulation of electromagnetic wave scattering from planar dielectric films deposited on rough perfectly conducting substrates,” Opt. Commun. 162(1-3), 99–111 (1999).
[Crossref]

A. S. Ramírez-Duverger and R. García-Llamas, “Light scattering from a multimode waveguide of planarmetallic walls,” Opt. Commun. 227(4-6), 227–235 (2003).
[Crossref]

E. Chaikina, P. Negrete-Regagnon, V. Ruiz-Cortés, and E. Méndez, “Measurements of the hemispherical scattering distribution function of rough dielectric surfaces,” Opt. Commun. 208(4-6), 215–221 (2002).
[Crossref]

R. Puzko and A. Merzlikin, “Analytical properties of the effective refractive index,” Opt. Commun. 383, 323–329 (2017).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (Coll. Park) (2)

Ø. S. Hetland, A. A. Maradudin, T. Nordam, P. A. Letnes, and I. Simonsen, “Numerical studies of the transmission of light through a two-dimensional randomly rough interface,” Phys. Rev. A (Coll. Park) 95(4), 043808 (2017).
[Crossref]

Ø. S. Hetland, A. A. Maradudin, T. Nordam, and I. Simonsen, “Numerical studies of the scattering of light from a two-dimensional randomly rough interface between two dielectric media,” Phys. Rev. A (Coll. Park) 93(5), 053819 (2016).
[Crossref]

Phys. Rev. B Condens. Matter (3)

J. A. Sánchez-Gil, A. A. Maradudin, J. Q. Lu, V. D. Freilikher, M. Pustilnik, and I. Yurkevich, “Scattering of electromagnetic waves from a bounded medium with a random surface,” Phys. Rev. B Condens. Matter 50(20), 15353–15368 (1994).
[Crossref] [PubMed]

S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Phys. Rev. B Condens. Matter 38(4), 2297–2311 (1988).
[Crossref] [PubMed]

Z. L. Wang, H. Ogura, and N. Takahashi, “Enhanced scattering from a planar waveguide structure with a slightly rough boundary,” Phys. Rev. B Condens. Matter 52(8), 6027–6041 (1995).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

F. Brouers, S. Blacher, and A. K. Sarychev, “Giant field fluctuations and anomalous light scattering from semicontinuous metal films,” Phys. Rev. B Condens. Matter Mater. Phys. 58(23), 15897–15903 (1998).
[Crossref]

M. Breit, V. Podolskiy, S. Grésillon, G. Von Plessen, J. Feldmann, J. Rivoal, P. Gadenne, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metalfilms,” Phys. Rev. B Condens. Matter Mater. Phys. 64(12), 125106 (2001).
[Crossref]

Physica B (1)

C. Bordier, C. Andraud, E. Charron, and J. Lafait, “Radiative transfer model with polarization effects applied to organic matter,” Physica B 394(2), 301–305 (2007).
[Crossref]

Sov. Phys. JETP (1)

E. E. Gorodnichev, S. L. Dudarev, D. Rogozkin, and M. I. Ryazanov, “Coherent effects in backscattering of waves from a medium with random inhomogeneities,” Sov. Phys. JETP 66, 938 (1987).

Sov.Phys. JETP Lett. (1)

E. E. Gorodnichev, S. L. Dudarev, D. B. Rogozkin, and M. I. Ryazanov, “Nature of anomalous x-ray reflection from a surface,” Sov.Phys. JETP Lett. 48, 147 (1988).

Tech. Phys. (1)

B. Aduev, D. Nurmukhametov, G. Belokurov, A. Zvekov, A. Kalenskii, A. Nikitin, and I. Y. Liskov, “Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite,” Tech. Phys. 59(9), 1387–1392 (2014).
[Crossref]

Thin Solid Films (1)

S. Kanakaraju, S. Mohan, and A. Sood, “Optical and structural properties of reactive ion beam sputter deposited CeO2 films,” Thin Solid Films 305(1-2), 191–195 (1997).
[Crossref]

Waves Random Media (1)

T. Kawanishi, H. Ogura, and Z. Wang, “Scattering of an electromagnetic wave from a slightly random dielectric surface: Yoneda peak and Brewster angle in incoherent scattering,” Waves Random Media 7(3), 351–384 (1997).
[Crossref]

Other (9)

C.-T. Tai, Dyadic Green functions in electromagnetic theory (IEEE, 1994).

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

H. Thorkild and A. D. Yaghjian, Plane-wave theory of time-domain fields: near-field scanning applications (IEEE, 1999).

J. W. Hovenier, C. V. Van der Mee, and H. Domke, Transfer of polarized light in planetary atmospheres: basic concepts and practical methods, vol. 318 (Springer Science & Business Media, 2014).

S. Chandrasekhar, Radiative transfer (Courier Corporation, 2013).

A. Ishimaru, Wave propagation and scattering in random media (Academic, 1978).

P. Sheng, Introduction to wave scattering, localization and mesoscopic phenomena, vol. 88 (Springer Science & Business Media, 2006).

P. Yeh, Optical waves in layered media, vol. 61 (Wiley-Interscience, 2005).

W. W. Salisbury, “Absorbent body for electromagnetic waves,” US Patent 2,599,944, (1952).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic representation of the considered coating.
Fig. 2
Fig. 2 Dependences of the specular reflection (R), absorption (A) and scattering (S) coefficients on the incidence angle of s-polarized radiation. The thickness of the CeO2 film is 2100 nm, the refractive index is nCeO2 = 2.2. The parameters of the Al sublayer: dAl = 200 nm, nAl = 1.26 + 7.28i [44]. The refractive index of the substrate is nAl2O3 = 1.70. The wavelength is 632.8 nm. The vertical dashed lines indicate the angle of mode excitation (see Eq. (6)). The scattering coefficient curve is normalized to a particular value at 0°.
Fig. 3
Fig. 3 A dielectric waveguide (CeO2) placed on a metal sublayer(Al).
Fig. 4
Fig. 4 Dependence of | E coh | 2 averaged across the CeO2 layer on the angle of incidence. The incident wave is s-polarized. The thickness of the CeO2 film is 2100 nm, the refractive index is nCeO2 = 2.2. The parameters of the Al sublayer: dAl = 200 nm, nAl = 1.26 + 7.28i [44]. The refractive index of the substrate is nAl2O3 = 1.70. The wavelength is 632.8 nm. The Poynting vector of the incident wave is normalized to 1. The dashed lines mark the position of modes (6) excitation.
Fig. 5
Fig. 5 Dependences of the specular reflection (R), scattering (S), coherent (Acoh) and incoherent (Aincoh) radiation absorption, coefficients on the incidence angle of s-polarized radiation. The thickness of the CeO2 film is 2100 nm, the refractive index is nCeO2 = 2.2 + 0.01i. The parameters of the Al sublayer: dAl = 200 nm, nAl = 1.26 + 7.28i [44]. The refractive index of the substrate is nAl2O3 = 1.70. The wavelength is 632.8 nm. The vertical dashed lines indicate the angle of radiation mode excitation (see Eq. (6)).
Fig. 6
Fig. 6 The intensities of radiation scattered in the air above the systems. The incident light is s-polarized. Each point represent the intensity of radiation scattered to direction ( k x , k y , k z = k 0 2 k x 2 k y 2 ) (see axes in Fig. 1). The figures correspond to cases of (a) the CeO2 waveguide on metal (the parameters of the system are the same as in Fig. 2) (b) the CeO2 waveguide with thickness 4200 nm (nCeO2 = 2.2).
Fig. 7
Fig. 7 Model of a system with a dipole scatterer.
Fig. 8
Fig. 8 A dipole placed between two layered subsystems.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

R+A=1,
S= c 4π I 0 N d Ce O 2 0 dz | lim r ( r 2 i=s,p E i ( r ^ ,r )× H i ( r ^ ,r ) ) r ^ dΩ |
lim r ( r 2 i=s,p E i ( r ^ ,r )× H i ( r ^ ,r ) ) r ^ dΩ
S= N I 0 d Ce O 2 0 dz | ( S p + S s ) r ^ dΩ |
S s ( k x , k y ,z )= c 8π k z 2 | E coh ( z ) | 2 | α k x k 0 2 k k z | 2 | t + s ( k x , k y ,z ) | 2 k ^
S p ( k x , k y ,z )= c 8π k z 2 | E coh ( z ) | 2 | α k 0 k y k | 2 | t + p ( k x , k y ,z ) | 2 k ^
2dn k 0 cosθ'+Δφ=2πm,mZ,
Δφ=arg( r Ce O 2 /Al )=arg( Y Ce O 2 Y Al Y Ce O 2 + Y Al )
Y={ ε k 2 / k 0 2 ,spolarizedwave ε/ ε k 2 / k 0 2 ,ppolarizedwave
n Ce O 2 eff = n Ce O 2 +i n sc .
I( x )= I 0 exp( σ eff N eff x )= I 0 exp( 2 n sc k 0 x )
I tr = ω 8π 2 n sc n Ce O 2 cosθ d Ce O 2 0 | E coh ( z ) | 2 dz = ω 8π σ eff N eff k 0 cosθ n Ce O 2 d Ce O 2 0 | E coh ( z ) | 2 dz
S+ A incoh + A coh =1R,
A coh = ω 8π Im( ε Al ) I 0 cosθ | E coh ( z ) | 2 dz
4dn k 0 cosθ'=2π m 2 , m 2 Z.
2dn k 0 cosθ'+π=2π m 1 , m 1 Z.
m 2 =2 m 1 1, m 1,2 Z.
d =α E ( x,y,z )
e s = ( k y k k x k 0 ) T
e p = ( k x k z k k k y k z k k k k ) T
E =ik( A + 1 k 2 ( , A ) ),
A = iω c e ik| r r 0 | | r r 0 | d 0
e ikr r = i 2π e i( k x x+ k y y+ k z z ) k z d k x d k y ,
E d = i 2π 1 k z ( k 2 k x 2 k x k y k x k z k x k y k 2 k y 2 k y k z k x k z k y k z k 2 k z 2 ) ( d x d y d z ) e i( k x x+ k y y+ k z z ) d k x d k y .
E = i 2π ( E s ( k x , k y ) e s + E p ( k x , k y ) e p ) e i( k x x+ k y y+ k z z ) d k x d k y ,
E s ( k x , k y )= k 2 k k z ( k y d x k x d y )
E p ( k x , k y )= k k ( k x d x + k y d y ) k k k z d z
( t + f + 0 )= T + ( f + +b a ) ( b a+ f )= T ( 0 t f )
E s,p ( x r , y r , z r )=i k z E + s,p ( k x , k y ) e ikr r ,r,

Metrics